Abstract
Fog computing provides a distributed computing paradigm that executes interactive and distributed applications, such as the Internet of Things (IoT) applications. Large-scale scientific applications, often in the form of workflow ensembles, have a distributed and interactive nature that demands a dispersed execution environment like fog computing. However, handling a large-scale application in heterogeneous environment of fog computing requires harmonizing heterologous resources over the continuum from the IoT to the cloud. This paper investigates offloading and task allocation problems for orchestrating the resources in a fog computing environment where the IoT application is considered in the form of workflow ensembles. We called Offload-Location a mechanism which has been designed to find offloading coalition structure alongside a matching algorithm for allocating the offloaded tasks to fog/cloud resources. The introduced solution attempts to minimize the execution time and minimize the price paid to servers for executing the tasks provided that Quality of Service (QoS) requirements of the ensemble’s deadline and budget are retaining. These objectives lead to maximizing the number of completed workflows of the ensemble as an ultimate goal. The appropriate performance of this mechanism is studied under different workflow applications and circumstances.
Similar content being viewed by others
References
Abbasi, M., Pasand, E.M., Khosravi, M.R.: Workload allocation in iot-fog-cloud architecture using a multi-objective genetic algorithm. J. Grid Comput. 1–14 (2020)
Apt, K.R., Witzel, A.: A generic approach to coalition formation. Int. Game Theor. Rev. 11(03), 347–367 (2009)
Aral, A., Brandic, I., Uriarte, R.B., De Nicola, R., Scoca, V.: Addressing application latency requirements through edge scheduling. J. Grid Comput. 17(4), 677–698 (2019)
Arisdakessian, S., Wahab, O.A., Mourad, A., Otrok, H., Kara, N.: Fogmatch: An intelligent multi-criteria iot-fog scheduling approach using game theory. IEEE/ACM Trans. Netw. (2020)
Bilbao, J.M.: Cooperative games on combinatorial structures, vol. 26. Springer Science & Business Media, Berlin (2012)
Bogomolnaia, A., Jackson, M.O., et al. : The stability of hedonic coalition structures. Games Econom. Behav. 38(2), 201–230 (2002)
Bryk, P., Malawski, M., Juve, G., Deelman, E.: Storage-aware algorithms for scheduling of workflow ensembles in clouds. J. Grid Comput. 14(2), 359–378 (2016)
Buyya, R., Srirama, S.N.: Fog and edge computing: principles and paradigms. Wiley, New York (2019)
Chen, L., Xu, J.: Socially trusted collaborative edge computing in ultra dense networks. In: Proceedings of the Second ACM/IEEE Symposium on Edge Computing, pp. 1–11 (2017)
Cybershake project. https://strike.scec.org/scecpedia/CyberShake_Study_13.4
Deelman, E., Gil, Y.: Workshop on the challenges of scientific workflows. Information Sciences Institute (2006)
Demange, G., Gale, D.: The strategy structure of two-sided matching markets. Econometrica: J. Econom. Soc. 873–888 (1985)
Driessen, T.S.: Cooperative games, solutions and applications, vol. 3. Springer Science & Business Media, Berlin (2013)
Fan, W., Liu, Y., Tang, B., Wu, F., Wang, Z.: Computation offloading based on cooperations of mobile edge computing-enabled base stations. IEEE Access 6, 22622–22633 (2017)
Ferguson, T.S.: A course in game theory world scientific (2018)
Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69(1), 9–15 (1962)
Gao, L., Moh, M.: Joint computation offloading and prioritized scheduling in mobile edge computing. In: 2018 International Conference on High Performance Computing & Simulation (HPCS), pp 1000–1007. IEEE (2018)
Gao, X., Huang, X., Bian, S., Shao, Z., Yang, Y.: Pora: Predictive offloading and resource allocation in dynamic fog computing systems. IEEE Int. Things J. 7(1), 72–87 (2019)
Genez, T.A., Bittencourt, L.F., Sakellariou, R., Madeira, E.R.: A flexible scheduler for workflow ensembles. In: Proceedings of the 9th International Conference on Utility and Cloud Computing, pp. 55–62 (2016)
Goudarzi, M., Wu, H., Palaniswami, M.S., Buyya, R.: An application placement technique for concurrent iot applications in edge and fog computing environments. IEEE Trans. Mob. Comput. 1–1 (2020)
Guo, K., Sheng, M., Quek, T.Q., Qiu, Z.: Task offloading and scheduling in fog ran: A parallel communication and computation perspective. IEEE Wirel. Commun. Lett. 9(2), 215–218 (2019)
Hosseinzadeh, M., Ghafour, M.Y., Hama, H.K., Vo, B., Khoshnevis, A.: Multi-objective task and workflow scheduling approaches in cloud computing: a comprehensive review. J. Grid Comput. 1–30 (2020)
Hu, P., Dhelim, S., Ning, H., Qiu, T.: Survey on fog computing: architecture, key technologies, applications and open issues. J. Netw. Comput. Appl. 98, 27–42 (2017)
Huedo, E., Montero, R.S., Moreno-Vozmediano, R., Vázquez, C., Holer, V., Llorente, I.M.: Opportunistic deployment of distributed edge clouds for latency-critical applications. J. Grid Comput. 19(1), 1–16 (2021)
Jošilo, S., Dán, G.: Decentralized scheduling for offloading of periodic tasks in mobile edge computing. In: 2018 IFIP Networking Conference (IFIP Networking) and Workshops, pp 1–9. IEEE (2018)
Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Characterizing and profiling scientific workflows. Futur. Gener. Comput. Syst. 29(3), 682–692 (2013)
Juve, G., Deelman, E., Vahi, K., Mehta, G., Berriman, B., Berman, B.P., Maechling, P.: Data sharing options for scientific workflows on amazon ec2. In: SC’10: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pp 1–9. IEEE (2010)
Leyton-Brown, K., Shoham, Y.: Essentials of game theory: A concise multidisciplinary introduction. Synt. Lect. Artif. Intell. Mach Learn. 2(1), 1–88 (2008)
Ligo project. https://pegasus.isi.edu/application-showcase/ligo/
Liu, Y., Xu, C., Zhan, Y., Liu, Z., Guan, J., Zhang, H.: Incentive mechanism for computation offloading using edge computing: A stackelberg game approach. Comput. Netw. 129, 399–409 (2017)
Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Algorithms for cost-and deadline-constrained provisioning for scientific workflow ensembles in iaas clouds. Futur. Gener. Comput. Syst. 48, 1–18 (2015)
Mashayekhy, L., Grosu, D.: A merge-and-split mechanism for dynamic virtual organization formation in grids. IEEE Trans. Parall. Distribut. Syst. 25(3), 540–549 (2014)
Mashayekhy, L., Nejad, M.M., Grosu, D.: Cloud federations in the sky: Formation game and mechanism. IEEE Trans. Cloud Comput. 3(1), 14–27 (2015)
McChesney, J., Wang, N., Tanwer, A., de Lara, E., Varghese, B.: Defog: fog computing benchmarks. In: Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, pp. 47–58 (2019)
Morales, L.E.P.: Efficient support for data-intensive scientific workflows on geo-distributed clouds. Ph.D thesis (2017)
Nisan, N., Ronen, A.: Algorithmic mechanism design. Games Econom. Behav. 35 (1-2), 166–196 (2001)
Osborne, M.J., et al.: An Introduction to Game Theory, vol. 3. Oxford University Press, New York (2004)
Montage project. http://montage.ipac.caltech.edu
Pegasus project. https://pegasus.isi.edu/application-showcase/
Pietri, I., Malawski, M., Juve, G., Deelman, E., Nabrzyski, J., Sakellariou, R.: Energy-constrained provisioning for scientific workflow ensembles. In: 2013 International Conference on Cloud and Green Computing, pp 34–41. IEEE (2013)
Ren, J., Zhang, D., He, S., Zhang, Y., Li, T.: A survey on end-edge-cloud orchestrated network computing paradigms: Transparent computing, mobile edge computing, fog computing, and cloudlet. ACM Comput. Surv. (CSUR) 52(6), 1–36 (2019)
Rodriguez, M.A., Buyya, R.: Scheduling dynamic workloads in multi-tenant scientific workflow as a service platforms. Futur. Gener. Comput. Syst. 79, 739–750 (2018)
Shakarami, A., Ghobaei-Arani, M., Masdari, M., Hosseinzadeh, M.: A survey on the computation offloading approaches in mobile edge/cloud computing environment: A stochastic-based perspective. J. Grid Comput. 1–33 (2020)
Sipht project. http://newbio.cs.wisc.edu/sRNA/
Stavrinides, G.L., Karatza, H.D.: A hybrid approach to scheduling real-time iot workflows in fog and cloud environments. Multimed. Tools Appl. 78(17), 24639–24655 (2019)
Tianze, L., Muqing, W., Min, Z., Wenxing, L.: An overhead-optimizing task scheduling strategy for ad-hoc based mobile edge computing. IEEE Access 5, 5609–5622 (2017)
Toczé, K., Nadjm-Tehrani, S.: A taxonomy for management and optimization of multiple resources in edge computing. Wirel. Commun. Mob. Comput. 2018 (2018)
Velasquez, K., Abreu, D.P., Assis, M.R., Senna, C., Aranha, D.F., Bittencourt, L.F., Laranjeiro, N., Curado, M., Vieira, M., Monteiro, E., et al.: Fog orchestration for the internet of everything: state-of-the-art and research challenges. J. Int. Serv. Appl. 9(1), 14 (2018)
Xie, Y., Zhu, Y., Wang, Y., Cheng, Y., Xu, R., Sani, A.S., Yuan, D., Yang, Y.: A novel directional and non-local-convergent particle swarm optimization based workflow scheduling in cloud–edge environment. Futur. Gener. Comput. Syst. 97, 361–378 (2019)
Xu, X., Chen, Y., Yuan, Y., Huang, T., Zhang, X., Qi, L.: Blockchain-based cloudlet management for multimedia workflow in mobile cloud computing. Multimed. Tools Appl. 79, 9819–9844 (2019)
Xu, X., Liu, Q., Luo, Y., Peng, K., Zhang, X., Meng, S., Qi, L.: A computation offloading method over big data for iot-enabled cloud-edge computing. Futur. Gener. Comput. Syst. 95, 522–533 (2019)
Yi, S., Hao, Z., Zhang, Q., Zhang, Q., Shi, W., Li, Q.: Lavea: Latency-aware video analytics on edge computing platform. In: Proceedings of the Second ACM/IEEE Symposium on Edge Computing, SEC ’17. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3132211.3134459 (2017)
Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J., Jue, J.P.: All one needs to know about fog computing and related edge computing paradigms: a complete survey. J. Syst. Archit. 98, 289–330 (2019)
Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing. ACM Sigmod Record 34(3), 44–49 (2005)
Zhang, K., Mao, Y., Leng, S., Maharjan, S., Zhang, Y.: Optimal delay constrained offloading for vehicular edge computing networks. In: 2017 IEEE International Conference on Communications (ICC), pp 1–6. IEEE (2017)
Zhou, B., Srirama, S.N., Buyya, R.: An auction-based incentive mechanism for heterogeneous mobile clouds. J. Syst. Softw. 152, 151–164 (2019)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Siar, H., Izadi, M. Offloading Coalition Formation for Scheduling Scientific Workflow Ensembles in Fog Environments. J Grid Computing 19, 34 (2021). https://doi.org/10.1007/s10723-021-09574-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10723-021-09574-y