Abstract
Big data involves a large amount of data generation, storage, transfer from one place to another, and analysis to extract meaningful information. Information centric networking (ICN) is an infrastructure that transfers big data from one node to another node, and provides in-network caches. For software defined network-based ICN approach, a recently proposed centralized cache server architecture deploys single cache server based on path-stretch value. Despite the advantages of centralized cache in ICN, single cache server for a large network has scalability issue. Moreover, it only considers the path-stretch ratio for cache server deployment. Consequently, the traffic can not be reduced optimally. To resolve such issues, we propose to deploy multiple cache servers based on joint optimization of multiple parameters, namely: (i) closeness centrality; (ii) betweenness centrality; (iii) path-stretch values; and (iv) load balancing in the network. Our proposed approach first computes the locations and the number of cache servers based on the network topology information in an offline manner and the cache servers are placed at their corresponding locations in the network. Next, the controller installs flow rules at the switches such that the switches can forward the request for content to one of its nearest cache server. Upon reaching a content request, if the content request matches with the contents stored at the cache server, the content is delivered to the requesting node; otherwise, the request is forwarded to the controller. In the next step, controller computes the path such that the content provider first sends the content to the cache server. Finally, a copy of the content is forwarded to the requesting node. Simulation results confirmed that the proposed approach performs better in terms of traffic overhead and average end-to-end delay as compared to an existing state-of-the-art approach.
Similar content being viewed by others
References
Salsano, S., Detti, A., Cancellieri, M., Pomposini, M., Blefari-Melazzi, N.: Transport-layer issues in information centric networks. In: ACM SIGCOMM Workshop on Information-Centric Networking (ICN2012), Helsinki, Finland (2012)
Koponen, T., Chawla, M., Chun, B.G., et al.: A data-oriented (and beyond) network architecture. In: ACM SIGCOMM (2007)
Jacobson, V., Smetters, D.K., Thornton, J.D., et al.: Networking named content. In: ACM CoNEXT (2009)
Garcia-Luna-Aceves, J.J., Barijough, M.M.: Efficient multicasting in content-centric networks using locator-based forwarding state. In: 2017 International Conference on Computing, Networking and Communications (ICNC), pp. 172–177. IEEE (2017)
Lv, J, Wang, X, Ren, K, Huang, M, Li, K.: ACO-inspired information-centric networking routing mechanism. Comput. Netw. 126, 200–17 (2017 Oct 24)
Antunes, R.S., Lehmann, M.B., Mansilha, R.B., Gaspary, L.P., Barcellos, M.P.: NDNRel: A mechanism based on relations among objects to improve the performance of NDN. J. Netw. Comput. Appl. 87, 73–86 (2017)
Ren, Y., Li, J., Li, L., Shi, S., Zhi, J., Wu, H.: Modeling content transfer performance in information-centric networking. Futur. Gener. Comput. Syst. 74, 12–19 (2017)
Kim, D., Kim, Y.: Enhancing NDN feasibility via dedicated routing and caching. Comput. Netw. 126, 218–228 (2017)
Torres, J.V., Alvarenga, I.D., Boutaba, R., Duarte, O.C.M.: An autonomous and efficient controller-based routing scheme for networking Named-Data mobility. Comput. Commun. 103, 94–103 (2017)
Gao, S., Zeng, Y., Luo, H., Zhang, H.: Scalable control plane for intra-domain communication in software defined information centric networking. Futur. Gener. Comput. Syst. 56, 110–120 (2016)
Aubry, E., Silverston, T., Chrisment, I.: SRSC: SDN-based routing scheme for CCN. In: 2015 1st IEEE Conference on Network Softwarization (NetSoft), pp. 1–5. IEEE (2015)
Adrichem, van, Niels, LM, Kuipers, Fernando A.: NDNFLow: software-defined named data networking. In: 2015 1st IEEE Conference on Network Softwarization (NetSoft), IEEE (2015)
Ueda, K., Yokota, K., Kurihara, J., Tagami, A.: Towards the NFVI-Assisted ICN: Integrating ICN forwarding into the virtualization infrastructure. In: Global Communications Conference (GLOBECOM), 2016 IEEE, pp. 1–6. IEEE (2016)
Lv, J., Wang, X., Huang, M., Shi, J., Li, K., Li, J.: RISC: ICN Routing mechanism incorporating SDN and community division. Comput. Netw. 123, 88–103 (2017)
Jmal, R., Fourati, L.C.: An OpenFlow architecture for managing content-centric-network (OFAM-CCN) based on popularity caching strategy. Computer Standards & Interfaces 51, 22–29 (2017)
https://github.com/fg-inet/panoptisim/tree/master/pickles accessed on December 19, 2017
Syrivelis, D., Parisis, G., Trossen, D., Flegkas, P., Sourlas, V., Korakis, T., Tassiulas, L.: Pursuing a software defined information-centric network. In: 2012 European Workshop on Software Defined Networking (EWSDN), pp. 103–108. IEEE (2012)
Trossen, D., Sarela, M., Sollins, K.: Arguments for an information-centric internetworking architecture. ACM SIGCOMM Computer Communication Review 40(2), 26–33 (2010)
http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf, Accessed on March 12, 2018
HassasYeganeh, S., Ganjali, Y.: Kandoo: a framework for efficient and scalable offloading of control applications. In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks, pp. 19–24. ACM (2012)
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf September 19, 2017
Seufert, M., Burger, V., Wamser, F., Tran-Gia, P., Moldovan, C., Hoßfeld, T.: Utilizing home router caches to augment CDNs towards information-centric networking. In: European Conference on Networks and Communications (EuCNC), Paris, France (2015)
Syrivelis, D., Parisis, G., Trossen, D., Flegkas, P., Sourlas, V., Korakis, T., Tassiulas, L.: Pursuing a software defined information-centric network. In: 2012 European Workshop on Software Defined Networking (EWSDN), pp. 103–108. IEEE (2012)
Vahlenkamp, M., Schneider, F., Kutscher, D., Seedorf, J.: Enabling information centric networking in IP networks using SDN. In: 2013 IEEE SDN for Future Networks and Services (SDN4FNS), pp. 1–6. IEEE (2013)
Veltri, L., Morabito, G., Salsano, S., Blefari-Melazzi, N., Detti, A.: Supporting information-centric functionality in software defined networks. In: 2012 IEEE International Conference on Communications (ICC), pp. 6645–6650. IEEE (2012)
Salsano, S., Blefari-Melazzi, N., Detti, A., Morabito, G., Veltri, L.: Information centric networking over SDN and OpenFlow: Architectural aspects and experiments on the OFELIA testbed. Comput. Netw. 57(16), 3207–3221 (2013)
Arumaithurai, M., Chen, J., Monticelli, E., Fu, X., Ramakrishnan, K.K.: Exploiting ICN for flexible management of software-defined networks. In: Proceedings of the 1st international conference on Information-centric networking, pp. 107–116. ACM (2014)
Aubry, E., Silverston, T., Chrisment, I.: Implementation and Evaluation of a Controller-Based Forwarding Scheme for NDN. In: 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), pp. 144–151. IEEE (2017)
Ueda, K., Yokota, K., Kurihara, J., Tagami, A.: Towards the NFVI-Assisted ICN: Integrating ICN Forwarding into the virtualization infrastructure. In: Global Communications Conference (GLOBECOM), 2016 IEEE, pp. 1–6. IEEE (2016)
Balan, T., Zamfir, S., Robu, D., Sandu, F.: Contributions to content-based software defined networks. In: 2016 International Conference on Communications (COMM), pp. 159–162. IEEE (2016)
Xiulei, W., Ming, C., Chao, H., Xi, W., Changyou, X.: SDICN: A software defined deployable framework of information centric networking. China Communications 13(3), 53–65 (2016)
Aubry, E., Silverston, T., Chrisment, I.: SRSC: SDN-based routing scheme for CCN. In: 2015 1st IEEE Conference on Network Softwarization (NetSoft), pp. 1–5. IEEE (2015)
Gao, S., Zeng, Y., Luo, H., Zhang, H.: Scalable area-based hierarchical control plane for software defined information centric networking. In: 2014 23rd International Conference on Computer Communication and Networks (ICCCN), pp. 1–7. IEEE (2014)
Xing, C., Ding, K., Hu, C., Chen, M., Xu, B.: SD-ICN: Toward Wide area deployable software defined information centric networking. KSII Trans. Internet Inf. Syst. 10(5), 2267–2285 (2016)
Son, J., Kim, D., Kang, H.S., Hong, C.S.: Forwarding strategy on SDN-based content centric network for efficient content delivery. In: 2016 International Conference on Information Networking (ICOIN), pp. 220–225. IEEE (2016)
Torresa, J.V., Boutabab, R., Duartea, O.C.M.: Evaluating CRoS-NDN: A comparative performance analysis of the Controller-based Routing Scheme for Named-Data Networking. In: Technical Report. Electrical Engineering Program (COPPE/UFRJ) (2016)
Lv, J., Wang, X., Huang, M., Shi, J., Li, K., Li, J.: RISC: ICN Routing mechanism incorporating SDN and community division. Comput. Netw. 123, 88–103 (2017)
Jmal, R., Fourati, L.C.: An OpenFlow architecture for managing content-centric-network (OFAM-CCN) based on popularity caching strategy. Computer Standards and Interfaces 51, 22–29 (2017)
Torres, J.V., Alvarenga, I.D., Boutaba, R., Duarte, O.C.M.: An autonomous and efficient controller-based routing scheme for networking Named-Data mobility. Comput. Commun. 103, 94–103 (2017)
Lai, J., Fu, Q., Moors, T.: Using SDN and NFV to enhance request rerouting in ISP-CDN collaborations. Comput. Netw. 113, 176–187 (2017)
Ahmed, S.H., Bouk, S.H., Kim, D., Rawat, D.B., Song, H.: Named data networking for software defined vehicular networks. IEEE Commun. Mag. 55(8), 60–66 (2017)
Chang, D., Kwak, M., Choi, N., Kwon, T., Choi, Y.: C-flow: An efficient content delivery framework with OpenFlow. In: 2014 International Conference on Information Networking (ICOIN), pp. 270–275. IEEE (2014)
Yang, C., Chen, Z., Xia, B., Wang, J.: When ICN meets c-RAN for HetNets: an SDN approach. IEEE Commun. Mag. 53(11), 118–125 (2015)
Arumaithurai, M., Chen, J., Maiti, E., Fu, X., Ramakrishnan, K.K.: Prototype of an ICN based approach for flexible service chaining in SDN. In: 2015 IEEE Conference on Computer Communications Workshops (INFOCOMWKSHPS), pp. 5–6. IEEE (2015)
Eum, S., Jibiki, M., Murata, M., Asaeda, H., Nishinaga, N.: An ICN architecture within the framework of SDN (2015)
Petropoulos, G., Katsaros, K.V., Xezonaki, M.E.: OpenFlow-compliant topology management for SDN-enabled information centric networks. In: 2017 IEEE Symposium on Computers and Communications (ISCC), pp. 951–954. IEEE (2017)
Xie, H., Zou, T.: Futurewei Technologies, Inc., Method of seamless integration and independent evolution of information-centric networking via software defined networking. U.S. Patent Application 13 (/911), 864 (2013)
Rowshanrad, S., Parsaei, M.R., Keshtgari, M.: Implementing NDN using SDN: a review on methods and applications. IIUM Engineering Journal 17(2), 11–20 (2016)
Sun, Q., Wendong, W., Hu, Y., Que, X., Xiangyang, G.: SDN-based autonomic CCN traffic management. In: Globecom Workshops (GC Wkshps), 2014, pp. 183–187. IEEE (2014)
Youssef, N.E.H.B., Barouni, Y., Khalfallah, S., Slama, J.B.H., Driss, K.B.: Mixing SDN and CCN for content-centric Qos aware smart grid architecture. In: 2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS), pp. 1–5. IEEE (2017)
Jiang, Z., Wu, D., Rojas-Cessa, R.: Lowest-cost network node identification for data caching for information centric networks. In: Sarnoff Symposium, 2016 IEEE 37th, pp. 193–198. IEEE (2016)
Kalghoum, A., Gammar, S.M.: Towards new information centric networking strategy based on software defined networking. In: Wireless Communications and Networking Conference (WCNC), 2017 IEEE, pp. 1–6. IEEE (2017)
Bacher, F., Rainer, B., Hellwagner, H.: Towards controller-aided multimedia dissemination in named data networking. In: 2015 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–6. IEEE (2015)
Mercian, A., Ravindran, R., Chakraborti, A.: ICN-based Network and Service Controller on an OpenFlow Network testbed, Technical Report. https://pdfs.semanticscholar.org/c710/faa9f63b6c38afccce988c62eb5be1dc886a.pdf Accessed on March 12, 2018
Ru, J., Zhe, C., Hongbin, L., Hongke, Z.: Status-aware resource adaptation in information-centric and software-defined network. China Communications 10(12), 66–76 (2013)
Li, R., Asaeda, H., Li, J., Fu, X.: A distributed authentication and authorization scheme for in-network big data sharing. Digital Communications and Networks 3(4), 226–235 (2017)
Karakannas, A., Zhao, Z.: Information centric networking for delivering big data with persistent identifiers. University of Amsterdam (2014)
Li, R., Harai, H., Asaeda, H.: An aggregatable name-based routing for energy-efficient data sharing in big data era. IEEE Access 3, 955–966 (2015)
Jmal, R., Fourati, L.C.: Emerging applications for future internet approach based-on SDN and ICN. In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), pp. 208–213. IEEE (2017)
Amin, R., Reisslein, M., Shah, N.: Hybrid SDN networks: a survey of existing approaches, In: IEEE Communications Surveys and Tutorials. https://doi.org/10.1109/COMST.2018.2837161 (2018)
Zhao, X., Yao, L., Wu, G: ESLD: An efficient and secure link discovery scheme for software-defined networking. Int. J. Commun. Syst. 31(10), e3552 (2018)
Wang, L., Yao, L., Xu, Z., Wu, G., Obaidat, M.S.: CFR: A cooperative link failure recovery scheme in software-defined networks. Int. J. Commun. Syst. 31(10), e3560 (2018)
Li, C., Wu, Y., Yuan, X., Sun, Z., Wang, W., Li, X., Gong, L.: Detection and defense of DDoS attack–based on deep learning in OpenFlow-based SDN. International Journal of Communication Systems (2018)
Trois, C., Del Fabro, M.D., de Bona, L.C., Martinello, M.: A survey on SDN programming languages: Toward a taxonomy. IEEE Commun. Surv. Tutorials 18(4), 2687–2712 (2016)
Nguyen, X.N., Saucez, D., Barakat, C., Turletti, T.: Rules placement problem in openflow networks: a survey. IEEE Commun. Surv. Tutorials 18(2), 1273–1286 (2016)
Murata, T.: Petri nets properties, analysis and applications. Proc. IEEE 77, 541–580 (1989). https://doi.org/10.1109/5.24143
Moura, L., Bjrner, N.: Satisfiability modulo theories: an appetizer. In: Oliveira, M.V.M., Woodcock, J. (eds.) Formal Methods: Foundations and Applications, vol. 5902, pp 23–36. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-10452-7_3
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Badshah, J., Kamran, M., Shah, N. et al. An Improved Method to Deploy Cache Servers in Software Defined Network-based Information Centric Networking for Big Data. J Grid Computing 17, 255–277 (2019). https://doi.org/10.1007/s10723-019-09477-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10723-019-09477-z