[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Visual and Audio Monitoring of Island Based Parallel Evolutionary Algorithms

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Monitoring and visualisation tools are currently attracting more and more attention in order to understand how search spaces are explored by complex optimisation ecosystems such as parallel evolutionary algorithms based on island models. Multilevel visualisation is actually a desirable feature for facilitating the monitoring of computationally expensive runs involving several hundreds of computers during hours or even days. In this paper we present two components of a future multilevel monitoring system: MusEAc, a high level, audio monitoring allowing to listen to a run and tune it in real time and GridVis, a lower lever, more precise a posteriori visualisation tool that lets the user understand why the algorithm has performed well or bad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grefenstette, J.: Parallel Adaptive Algorithms for Function Optimization:(preliminary Report). Computer Science Department, Vanderbilt University, Vanderbilt University. Department of Computer Science (1981)

  2. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. Evol. Comput., IEEE Trans. 6(5), 443–462 (2002)

    Article  Google Scholar 

  3. Collet, P., F.: Automatic parallelization of EC on GPGPUs and clusters of GPGPU machines with EASEA and EASEA-CLOUD. Natural Computing Series. In: Massively Parallel Evolutionary Computation on Gpgpus. In: Tsutsui, S., Collet, P. (eds.) , pp. 35–62. Springer-Verlag New York Incorporated (2013)

  4. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: On separability, population size and convergence. J. Comput. Inf. Technol. 7, 33–48 (1999)

    Google Scholar 

  5. Karafotias, G., Hoogendoorn, M., Eiben, A.: Parameter control in evolutionary algorithms:trends and challenges. IEEE Transactions on Evolutionary Computation (2014) to appear

  6. Eiben, A., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

    Article  Google Scholar 

  7. Lutton, E., Fekete, J.D.: Visual analytics of ea data. In: Genetic and Evolutionary Computation Conference, GECCO 2011. (2011) July 12-16, 2011, Dublin, Ireland

  8. Lutton, E., Tonda, A., Gaucel, S., Foucquier, J., Riaublanc, A., Perrot, N.: Food model exploration through evolutionary optimization coupled with visualization: application to the prediction of a milk gel structure. In: From Model Foods to Food Models. DREAM Project’s International Conference (2013)

  9. Pohlheim, H., AG, D.: Understanding the Course and State of Evolutionary Optimizations Using Visualization: Ten Years of Industry Experience with Evolutionary Algorithms. Artif. Life 12, 217–227 (2006)

    Article  Google Scholar 

  10. Brehmer, M., Munzner, T.: A multi-level typology of abstract visualization tasks. Visualization and Computer Graphics. IEEE Trans. 19(12), 2376–2385 (2013)

    Google Scholar 

  11. Moreta, S., Telea, A.: Multiscale visualization of dynamic software logs. In: Proceedings of the 9th Joint Eurographics / IEEE VGTC Conference on Visualization. EUROVIS’07, Aire-la-Ville, Switzerland, Switzerland, Eurographics Association, pp. 11–18 (2007)

  12. Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Take it easea. In: Parallel Problem Solving from Nature PPSN VI, pp. 891–901. Springer (2000)

  13. Maitre, O., Krüger, F., Querry, S., Lachiche, N., Collet, P.: Easea: Specification and execution of evolutionary algorithms on gpgpu. Soft Computing - A Fusion of Foundations, Methodologies and Applications 1 Special issue on Evolutionary Computation on General Purpose Graphics Processing Units

  14. Jiang, J., Jorda, J.L., Yu, J., Baumes, L.A., Diaz-Cabanas, E.M.M.J., Kolb, U., Corma, A.: Synthesis and structure determination of the hierarchical meso-microporous zeolite itq-43. Science 333(6046), 1131–1134 (2011)

    Article  Google Scholar 

  15. Pauri, F., Pierelli, F., Chatrian, G.E., Erdly, W.W.: Long-term eeg-video-audio monitoring: computer detection of focal eeg seizure patterns. Electroencephalogr. Clin. Neurophysiol. 82(1), 1–9 (1992)

    Article  Google Scholar 

  16. Matúš, P., Eva, V., L’ubomír, D., Anton, Č.: The joint database of audio events and backgrounds for monitoring of urban areas. J. Electr. Electr. Eng. 4(1) (2011)

  17. Colombelli-Négrel, D., Robertson, J., Kleindorfer, S.: A new audio-visual technique for effectively monitoring nest predation and the behaviour of nesting birds. Emu 109(1), 83–88 (2009)

    Article  Google Scholar 

  18. Moulines, E., Laroche, J.: Non-parametric techniques for pitch-scale and time-scale modification of speech. Speech Commun. 16(2), 175–205 (1995)

    Article  Google Scholar 

  19. Herold, N.: Timbre et forme. l’utilisation formelle du timbre dans la musique pour piano du xix siecle. PhD thesis, Université de Strasbourg (2011)

  20. Hérold, N.: L’analyse formelle du timbre: éléments pour une approche méthodologique. In: Recherche dans les arts: présentation des travaux en cours-EHESS (2010)

  21. Chemillier, M.: György ligeti et la logique des textures. Anal. Music. 38, 75–85 (2001)

    Google Scholar 

  22. Welch, J.: An evidence-based approach to reduce nuisance alarms and alarm fatigue. Biomed. Ins. Technol. 45(s1), 46–52 (2011)

    Article  MathSciNet  Google Scholar 

  23. Tenenbaum, G., Lidor, R., Lavyan, N., Morrow, K., Tonnel, S., Gershgoren, A., Meis, J., Johnson, M.: The effect of music type on running perseverance and coping with effort sensations. Psychol. Sport Exerc. 5(2), 89–109 (2004)

    Article  Google Scholar 

  24. Pelletier, C.L.: The effect of music on decreasing arousal due to stress: A meta-analysis. J. Music Ther. 41(3), 192–214 (2004)

    Article  Google Scholar 

  25. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)

    Article  MATH  Google Scholar 

  26. Tory, M.: User studies in visualization: A reflection on methods. In: Huang, W. (ed.) Handbook of Human Centric Visualization, pp. 411–426. Springer, New York (2014)

    Chapter  Google Scholar 

  27. Mouginot, P.: Pithoprakta, de iannis xenakis

  28. Spears, W.M.: An overview of multidimensional visualization techniques. In: Evolutionary Computation Visualization Workshop. In: Collins, T. D. (ed.) , USA (1999)

  29. Routen, T.: Techniques for the visualisation of genetic algorithms. In: The First IEEE Conference on Evolutionary Computation. Volume II, pp. 846–851 (1994)

  30. Shine, W., Eick, C.: Visualizing the evolution of genetic algorithm search processes. In: Proceedings of 1997 IEEE International Conference on Evolutionary Computation, pp. 367–372. IEEE Press (1997)

  31. Wu, A.S., Jong, K.A.D., Burke, D.S., Grefenstette, J.J., Ramsey, C.L.: Visual analysis of evolutionary algorithms. In: In Proceedings of the 1999 Conference on Evolutionary Computation (CEC’99), pp. 1419–1425. IEEE Press (1999)

  32. Hart, E., Ross, P.: Gavel - a new tool for genetic algorithm visualization. IEEE Trans. Evol. Comput. 5(4), 335–348 (2001)

    Article  Google Scholar 

  33. Mach, M., Zetakova, Z.: Visualising genetic algorithms: A way through the Labyrinth of search space. In: Intelligent Technologies - Theory and Applications. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) pp. 279–285. IOS Press, Amsterdam (2002)

  34. Bedau, M.A., Joshi, S., Lillie, B.: Visualizing waves of evolutionary activity of alleles. In: Proceedings of the 1999 GECCO Workshop on Evolutionary Computation Visualization, pp. 96–98 (1999)

  35. Bullock, S., Bedau, M.A.: Exploring the dynamics of adaptation with evolutionary activity plots. Artif. Life 12, 193–197 (2006)

    Article  Google Scholar 

  36. Pohlheim, H.: Visualization of evolutionary algorithms - set of standard techniques and multidimensional visualization. In: GECCO’99 - Proceedings of the Genetic and Evolutionary Computation Conference, pp. 533–540, San Francisco, CA. (1999)

  37. Pohlheim, H.: Geatbx - genetic and evolutionary algorithm toolbox for matlab http://www.geatbx.com/

  38. Computer, A.K., Kerren, A.: Eavis: A visualization tool for evolutionary algorithms. In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 05), pp. 299–301 (2005)

  39. Parmee, I., Abraham, J.: Supporting implicit learning via the visualisation of coga multi-objective data. In: CEC2004, Congress on Evolutionary Computation, 19-23 June. Volume 1, pp. 395 – 402 (2004)

  40. Collins, T.D.: In: Visualizing evolutionary computation, pp. 95–116. Springer-Verlag New York, Inc., NY, USA (2003)

    Google Scholar 

  41. Daida, J., Hilss, A., Ward, D., Long, S.: Visualizing tree structures in genetic programming. Genet. Program Evolvable Mach. 6, 79–110 (2005)

    Article  Google Scholar 

  42. Kohl, J., Casavant, T.: A software engineering, visualization methodology for parallel processing systems. In: Computer Software and Applications Conference, 1992. COMPSAC ’92. Proceedings., Sixteenth Annual International, pp. 51–56 (1992)

  43. Morrow, T.M., Ghosh, S.: Divide: Distributed visual display of the execution of asynchronous, distributed algorithms on loosely-coupled parallel processors. In: Proc. Visualization ’93, pp. 166–173. IEEE Computer Society Press (1993)

  44. Brown, J., Martin, P., Paku, N., Turner, G.: Visualisations of parallel algorithms for reconfigurable torus computers. In: Computer Human Interaction Conference, 1998. Proceedings. 1998 Australasian, pp. 152–159 (1998)

  45. Price, B.A., Baecker, R., Small, I.S.: A principled taxonomy of software visualization. J. Vis. Lang. Comput. 4(3), 211–266 (1993)

    Article  Google Scholar 

  46. Urquiza-Fuentes, J., Velázquez-Iturbide, J.A.: A survey of successful evaluations of program visualization and algorithm animation systems. Trans. Comput. Educ. 9(2), 9:1–9:21 (2009)

    Article  Google Scholar 

  47. Wilkinson, L., Friendly, M.: The history of the cluster heat map. Am. Stat. 63(2), 179–184 (2009)

    Article  MathSciNet  Google Scholar 

  48. Ghoniem, M., Fekete, J.D., Castagliola, P.: On the readability of graphs using node-link and matrix-based representations: controlled experiment and statistical analysis. Inform. Vis. J. 4(2), 114–135 (2005)

    Article  Google Scholar 

  49. Brandes, U., Nick, B.: Asymmetric relations in longitudinal social networks. IEEE Trans. Vis. Comput. Graph. 17(12), 2283–2290 (2011)

    Article  Google Scholar 

  50. Bach, B., Pietriga, E., Fekete, J.D.: Visualizing Dynamic Networks with Matrix Cubes. In: SICCHI Conference on Human Factors in Computing Systems (CHI). ACM, Toronto, Canada (2014)

    Book  Google Scholar 

  51. Pryke, A., Mostaghim, S., Nazemi, A.: Evolutionary Multi-Criterion Optimization. Volume 4403 of Lecture Notes in Computer Science. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) , pp. 361–375. Springer Berlin Heidelberg (2007)

  52. Alper, B., Bach, B., Henry Riche, N., Isenberg, T., Fekete, J.D.: Weighted graph comparison techniques xfor brain connectivity analysis. In: Proceedings of ACM CHI Conference on Human Factors in Computing Systems, pp. 483–492 (2013)

  53. Ghoniem, M., Fekete, J.D., Castagliola, P.: A comparison of the readability of graphs using node-link and matrix-based representations. In: Proceedings of the IEEE Symposium on Information Visualization, pp. 17–24. INFOVIS ’04 (2004)

  54. Helsgaun, K.: An effective implementation of the lin-kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126, 106–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. Lutton, E., Collet, P., Louchet, J.: EASEA comparisons on test functions: Galib versus eo. In: EA01 Conference on Artificial Evolution, Le Creusot, France (2001)

  56. Maitre, O., Krueger, F., Querry, S., Lachiche, N., Collet, P.: Easea: specification and execution of evolutionary algorithms on gpgpu. Soft Comput. 16(2), 261–279 (2012)

    Article  Google Scholar 

  57. Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Parallel Problem Solving from Nature - PPSN VI 6th International Conference. In: Schoenauer, M., Deb, K., Rudolf, G., Yao, X., Lutton, E., J.J., M., Schwefel, H.P. (eds.) . LNCS 1917, pp. 16–20. Springer Verlag, Paris, France (2000)

  58. Tsutsui, S., Collet, P.: Massively Parallel Evolutionary Computation on Gpgpus. Natural Computing Series. Springer-Verlag New York Incorporated (2013)

  59. Alba, E., Tomasini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 443–462 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyne Lutton.

Additional information

This work has been funded by the French National Agency for research (ANR), under the grant ANR-11-EMMA-0017, EASEA-Cloud Emergence project 2011, http://www.agence-nationale-recherche.fr/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutton, E., Gilbert, H., Cancino, W. et al. Visual and Audio Monitoring of Island Based Parallel Evolutionary Algorithms. J Grid Computing 13, 309–327 (2015). https://doi.org/10.1007/s10723-014-9321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-014-9321-8

Keywords

Navigation