Abstract
Performance is a main issue in parallel application development. Dynamic tuning is a technique that changes certain applications’ parameters on-line to improve their performance adapting the execution to actual conditions. To perform that, it is necessary to collect measurements, analyze application behavior and carry out tuning actions during the application execution. Computational Grids present proclivity for dynamic changes in the environment during the application execution. Therefore, dynamic tuning tools are necessary to reach the expected performance indexes of applications on those environments. This paper addresses the dynamic tuning of parallel/distributed applications on Computational Grids. We analyze Grid environments to determine their characteristics and we present the development of dynamic tuning tool GMATE enabled for such environments. The performance analysis is based on performance models that indicate how to improve the application execution. A particular problem which provokes performance bottlenecks is the load imbalance in Master/Worker applications. A heuristic to dynamically tune granularity of work and number of workers is proposed. Finally, we describe the experimental validation of the performance model and its applicability on a set of real parallel applications.
Similar content being viewed by others
References
Agarwala, S., Poellabauer, C., Kong, J., Schwan, K., Wolf, M.: System-level resource monitoring in high-performance computing environments. J. Grid Computing 1(3), 273–289 (2003)
Allcock, W.E., Bresnahan, J., Kettimuthu, R., Link, J.M.: The globus extensible input/output system (xio): A protocol independent io system for the Grid. In: 19th International Parallel and Distributed Processing Symposium (IPDPS 2005), CD-ROM / Abstracts Proceedings, 4–8 April 2005, Denver, CA, USA. IEEE Computer Society (2005). doi: 10.1109/IPDPS.2005.429
Argollo, E.: Performance Prediction and Tuning in a Multi-Cluster Environment. Ph.D. thesis, Departament d’Arquitectura de Computadors i Sistemes Operatius, Universitat Autonoma de Barcelona (2006)
Bayucan, A., Henderson, R., Jones, J., Lesiak, C., Mann, B., Nitzberg, B., Proett, T., Utley, J.: Portable Batch System Administrator Guide. Veridian Systems PBS Products Dept, 2672 Bayshore Parkway, Suite 810 Mountain View, CA 94043 (2000)
Berman, F., Casanova, H., Chien, A., Cooper, K., Dail, H., Dasgupta, A., Deng, W., Dongarra, J., Johnsson, L., Kennedy, K., et al.: New Grid scheduling and rescheduling methods in the grads project. Int. J. Parallel Prog. 33(2–3), 209–229 (2005)
Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira, S., Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A., Zagorodnov, D.: Adaptive computing on the Grid using apples. IEEE Trans. Parallel Distrib. Syst. 14(4), 369–382 (2003)
Bharadwaj, V., Ghose, D., Robertazzi, T.G.: Divisible load theory: A new paradigm for load scheduling in distributed systems. Clust. Comput. 6(1), 7–17 (2003)
Buck, B., Hollingsworth, J.K.: An api for runtime code patching. Int. J. High Perform. Comput. Appl. 14(4), 317–329 (2000). doi: 10.1177/109434200001400404
Caymes-Scutari, P., Morajko, A., Margalef, T., Luque, E.: Automatic generation of dynamic tuning techniques. In: Euro-Par, pp. 13–22 (2007)
César, E., Mesa, J.G., Sorribes, J., Luque, E.: Modeling master-worker applications in poetries. In: HIPS, pp. 22–30 (2004)
Costa, G., Jorba, J., Morajko, A., Margalef, T., Luque, E.: Performance models for dynamic tuning of parallel applications on computational Grids. In: CLUSTER, pp. 376–385 (2008)
Costa, G., Morajko, A., Margalef, T., Luque, E.: Automatic tuning in computational Grids. In: Proceedings of the 8th international conference on Applied parallel computing: state of the art in scientific computing, PARA’06, pp. 381–389. Springer-Verlag, Berlin, Heidelberg (2007). URL http://dl.acm.org/citation.cfm?id=775059.1775115
De Sarkar, A., Roy, S., Ghosh, D., Mukhopadhyay, R., Mukherjee, N.: An adaptive execution scheme for achieving guaranteed performance in computational Grids. J. Grid Computing 8(1), 109–131 (2010)
Fitzgerald, S.: Grid information services for distributed resource sharing. In: Proceedings of the 10th IEEE International Symposium on High Performance Distributed Computing, HPDC ’01, p. 181. IEEE Computer Society, Washington, DC, USA (2001). URL http://dl.acm.org/citation.cfm?id=874077.876489
Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2003)
Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl. 15, 200–222 (2001)
Fountain, T.: Parallel Computing: Principles and Practice. Cambridge University Press (2006). URL http://books.google.es/books?id=d8sAGmfTx2gC
Genaud, S., Grunberg, M., Mongenet, C.: Experiments in running a scientific mpi application on Grid’5000. In: 4th High Performance Grid Computing International Workshop, IPDPS Conference Proceedings. IEEE (2007). URL http://icps.u-strasbg.fr/upload/icps-2007-184.pdf
Germain-Renaud, C., Loomis, C., Mościcki, J.T., Texier, R.: Scheduling for responsive Grids. J. Grid Computing 6(1), 15–27 (2008)
Gerndt, M.: Performance Tools for the Grid: State of the Art and Future: Apart White Paper. Research Report Series Lehrstuhl Fur Rechnertechnik und Rechnerorganisation Technische Universitat Munchen Series. Shaker Verlag GmbH (2004). URL http://books.google.es/books?id=k7TSPAAACAAJ
Hablot, L., Gluck, O., Mignot, J.C., Genaud, S., Primet, P.VB.: Comparison and tuning of mpi implementations in a Grid context. In: Proceedings of the 2007 IEEE International Conference on Cluster Computing, CLUSTER ’07, pp. 458–463. IEEE Computer Society, Washington, DC (2007)
Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists and Engineers, 1st edn. CRC Press, Inc., Boca Raton (2010)
Heymann, E., Senar, M.A., Luque, E., Livny, M.: Adaptive scheduling for master-worker applications on the computational Grid. In: Proceedings of the First IEEE/ACM International Workshop on Grid Computing, Grid ’00, pp. 214–227. Springer-Verlag (2000)
Hollingsworth, J.K., Keleher, P.J.: Prediction and adaptation in active harmony. Clust. Comput. 2(3), 195–205 (1999). doi: 10.1023/A:1019034926845
Javadi, B., Abawajy, J.H.: Performance analysis of heterogeneous multi-cluster systems. In: Proceedings of the 2005 International Conference on Parallel Processing Workshops, ICPPW ’05, pp. 493–500 (2005)
Karonis, N.T., Toonen, B., Foster, I.: Mpich-g2: A Grid-enabled implementation of the message passing interface. J. Parallel Distrib. Comput. 63(5), 551–563 (2003). doi: 10.1016/S0743-7315(03)00002-9
Keller, J., Schiffmann, W.: Guiding performance tuning for Grid schedules. In: Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing, IPDPS ’09, pp 1–6. IEEE Computer Society, Washington, DC (2009). doi: 10.1109/IPDPS.2009.5161169
Kertész, A., Kacsuk, P.: Grid interoperability solutions in Grid resource management. IEEE Syst. J. 3(1), 131–141 (2009)
Kondo, D., Chien, A.A., Casanova, H.: Scheduling task parallel applications for rapid turnaround on enterprise desktop Grids. J. Grid Comput 5(4), 379–405 (2007)
MacDougall, M.H.: Simulating computer systems: techniques and tools. MIT Press, Cambridge (1987)
Maghraoui, K., Desell, T.J., Szymanski, B.K., Varela, C.A.: Dynamic malleability in iterative mpi applications. In: 7th International Symposium on Cluster Computing and the Grid, pp. 591–598 (2008)
Miller, B., Cortes, A., Senar, M.A., Livny, M.: The tool d& #230;mon protocol (tdp). In: Proceedings of the 2003 ACM/IEEE conference on Supercomputing, SC ’03, p. 19. ACM, New York (2003)
Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Karavanic, K.L., Kunchithapadam, K., Newhall, T.: The paradyn parallel performance measurement tool. Computer 28(11), 37–46 (1995). doi: 10.1109/2.471178
Morajko, A.: Dynamic Tuning of Parallel/Distributed Applications. Ph.D. thesis, Departament d’Arquitectura de Computadors i Sistemes Operatius, Universitat Autonoma de Barcelona (2003)
Morajko, A., Caymes-Scutari, P., Margalef, T., Luque, E.: Automatic tuning of data distribution using factoring in master/worker applications. In: International Conference on Computational Science (2), pp. 132–139 (2005)
Morajko, A., Margalef, T., Luque, E.: Design and implementation of a dynamic tuning environment. J. Parallel Distrib. Comput. 67(4), 474–490 (2007)
Morajko, A., Morajko, O., Margalef, T., Luque, E.: Mate: Dynamic performance tuning environment. In: Euro-Par, pp. 98–106 (2004)
Ribler, R., Vetter, J., Simitci, H., Simitci, H., Reed, D.A.: Autopilot: Adaptive control of distributed applications. In: Proceedings of the 7th IEEE Symposium on High-Performance Distributed Computing, pp. 172–179 (1998)
Ribler, R.L., Simitci, H., Reed, D.A.: The autopilot performance-directed adaptive control system. Future Gener. Comput. Syst. 18(1), 175–187 (2001). doi: 10.1016/S0167-739X(01)00051-6
Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High Perform. Comput. Appl. 20(2), 287–311 (2006). doi: 10.1177/1094342006064482
Team, G.: The Dynamically-Updated Request Online Coallocator (2007)
Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: The condor experience. Concurr. Comput. Pract. Experience 17, 323–356 (2005)
Truong, H.L., Fahringer, T.: Scalea-g: A unified monitoring and performance analysis system for the Grid. Sci. Program 12(4), 225–237 (2004) URL http://dl.acm.org/citation.cfm?id=240160.1240161
Vadhiyar, S.S., Dongarra, J.J.: Self adaptivity in Grid computing. Concurr. Comput. Pract. Experience 17(2–4), 235–257 (2005)
Wolski, R.: Dynamically forecasting network performance using the network weather service. Clust. Comput. 1(1), 119–132 (1998). doi: 10.1023/A:1019025230054
Zanikolas, S., Sakellariou, R.: A taxonomy of Grid monitoring systems. Future Gener. Comput. Syst. 21(1), 163–188 (2005). doi: 10.1016/j.future.2004.07.002
Zhang, J., Luo, J.: Scheduling mixed-parallel application onto multicluster Grid with background workloads. In: CSCWD, pp. 429–436 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Costa, G., Sikora, A., Jorba, J. et al. GMATE: Dynamic Tuning of Parallel Applications in Grid Environment. J Grid Computing 12, 371–398 (2014). https://doi.org/10.1007/s10723-013-9287-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10723-013-9287-y