[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.)

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Chitosan is a biopolymer with multiple agricultural applications. The objective of this research was to identify the mechanism required for the chitosan response. Chitosan clearly induced resistance to osmotic stress (a surrogate for drought stress) in the ‘Leung Pratew 123’ (‘LPT123’) rice (Oryza sativa L. ‘Leung Pratew123’) by enhancing plant growth and maintenance of the photosynthetic pigments during osmotic stress, but not in the derived mutated line, LPT123-TC171. Hydrogen peroxide (H2O2) was increased after osmotic stress in both lines, but higher levels were found in the LPT123 cultivar. Chitosan application did not affect the H2O2 or glutathione content under the osmotic stress condition in the LPT123 cultivar, but decreased H2O2 accumulation in the LPT123-TC171 line. The 20-fold lower glutathione level in the LPT123 cultivar suggested a low glutathione-ascorbate cycle activity that would lead to the higher H2O2 levels. Whereas, the chitosan-mediated reduction in glutathione levels in the LPT123-TC171 line during osmotic stress suggested a higher glutathione-ascorbate cycle activity leading to low H2O2 levels. Additionally, a higher peroxidase and catalase activity following chitosan treatment of the LPT123-TC171 line supports the lower observed H2O2 level. The lipid peroxidation after osmotic stress was decreased by chitosan treatment in LPT123, but not in LPT123-TC171. The exogenous H2O2 application with chitosan treatment in LPT123-TC171 could enhance plant growth during osmotic stress. It is concluded that the limited H2O2 level, the signal molecule for chitosan responses in the LPT123-TC171 line, resulted in no beneficial effects of chitosan application for osmotic stress. Therefore, H2O2 is proposed to be one of the key components for plant growth stimulation during osmotic (drought) stress by chitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Beers RF, Sizer IW (1951) A spectrophotometeric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    Google Scholar 

  • Bittelli M, Flury M, Campbell GS, Nichols EJ (2001) Reduction of transpiration through foliar application of chitosan. Agric Meteorol 107:167–175

    Article  Google Scholar 

  • Boonlertnirun S, Sarobol E, Sooksathan I (2006) Effects of molecular weight of chitosan on yield potential of rice cultivar Suphan Buri 1. Kasetsart J 40:854–861

    Google Scholar 

  • Boonlertnirun S, Sarobol E, Meechoui S, Sooksathan I (2007) Drought Recovery and grain yield potential of rice after chitosan application. Kasetsart J 41:1–6

    CAS  Google Scholar 

  • Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross tolerance. Trends Plant Sci 5:241–246

    Article  PubMed  CAS  Google Scholar 

  • Castillo FJ, Greppin H (1988) Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. Environ Exp Bot 28:231–238

    Article  CAS  Google Scholar 

  • Cho MH, No HK, Prinyawiwatkul W (2008) Chitosan treatments affect growth and selected quality of sunflower sprouts. J Food Sci 73:71–77

    Google Scholar 

  • Du H, Liu L, You L, Yang M, He Y, Li X, Xiong L (2011) Characterization of an inositol 1, 3, 4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice. Plant Mol Biol 77:547–563

    Article  PubMed  CAS  Google Scholar 

  • Dzung NA, Khanh VTP, Dzung TT (2011) Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydr Polym 84:751–755

    Article  CAS  Google Scholar 

  • Faoro F, Maffi D, Cantu D, Iriti M (2008) Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. Biocontrol 53:387–401

    Article  CAS  Google Scholar 

  • Foster JG, Hess JL (1980) Responses of superoxide dismutase and glutathione reductase activity in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol 66:482–487

    Article  PubMed  CAS  Google Scholar 

  • Gara LD, de Pinto MC, Tommasi F (2003) The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction. Plant Physiol Bioch 41:863–870

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioc 48:909–930

    Article  CAS  Google Scholar 

  • Guan YJ, HU J, Wang XJ, Shao CX (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejing Univ Sci B 10:247–433

    Article  Google Scholar 

  • He L, Gao Z, Li R (2009) Pretreatment of seed with H2O2 enhances drought tolerance of wheat (Triticum aestivum L.) seedlings. Afr J Biotechnol 8:6151–6157

    CAS  Google Scholar 

  • Ishibashi Y, Yamagguchi H, Yuasa T, Iwaya-Inoue M, Arima S, Zheng S (2011) Hydrogen peroxidase spraying alleviates drought stress in soybean plants. J Plant Physiol 168:1562–1567

    Article  PubMed  CAS  Google Scholar 

  • Jamal Uddin AFM, Hashimoto F, Shimizu K, Sakata Y (2004) Monosaccharides and chitosan sensing in bud growth and petal pigmentation in Eustoma grandiflorum (Raf.) Shinn. Sci Hortic-Amsterdam 100:127–138

    Article  Google Scholar 

  • Jana S, Choudhuri MA (1982) Glycolate metabolism of the submerged aquatic angiosperm during aging. Aquat Bot 12:345–354

    Article  CAS  Google Scholar 

  • Jayaraj J, Rahman M, Wan A, Punja ZK (2009) Enhanced resistance to foliar fungal pathogens in carrot by application of elicitors. Ann Appl Biol 155:71–80

    Article  CAS  Google Scholar 

  • Jubany-Marí T, Munne’-Bosch S, Alegre L (2010) Redox regulation of water stress responses in field-growth plants. Role of hydrogen peroxide and ascorbate. Plant Physiol Bioch 48:351–358

    Article  Google Scholar 

  • Kananont N, Pichyangkura R, Chanprame S, Chadchawan S, Limpanavech P (2010) Chitosan specificity for the in vitro seed germination of two Dendrobium orchids (Asparagales: Orchidaceae). Sci Hortic-Amsterdam 124:239–247

    Article  CAS  Google Scholar 

  • Korsangruang S, Soonthornchareonnon N, Chintapakorn Y, Saralamp P, Prathanturarug S (2010) Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation in Pueraria candollei var candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell Tiss Organ Cult 103:333–342

    Article  CAS  Google Scholar 

  • Kumar Ku, Rao KP, Sharma P, Sinha AK (2008) Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol Bioch 46:891–897

    Article  CAS  Google Scholar 

  • Lee S, Choi H, Suh S, Doo IS, Oh KY, Choi EJ, Taylor ATS, Low PS, Lee Y (1999) Oligogalacturonic acid and chitosan reduce stomatal aperture by Inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol 121:147–152

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–380

    Article  CAS  Google Scholar 

  • Limpanavech P, Chaiyasuta S, Vongpromek R, Pichyangkura R, Khunwasi C, Chadchawan S, Lotrakul P, Bunjongrat R, Chaidee A, Bangyeekhun T (2008) Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid. Sci Hortic-Amaterdam 116:65–72

    Article  CAS  Google Scholar 

  • Lin W, Hu X, Zhang W, Rogers WJ, Cai W (2005) Hydrogen peroxide mediates defence reponses induced by chitosans of different molecular weights in rice. J Plant Physiol 162:937–944

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Zhou X, Dong N, Liu X, Zhang H, Zhang Z (2011a) Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Funct Integr Genomics 11:431–443

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Liu Y, Guo K, Fan D, Li G, Zheng Y, Yu L, Yang R (2011b) Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environ Exp Bot 71:174–183

    Article  CAS  Google Scholar 

  • Lowry OH, Rosbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265

    PubMed  CAS  Google Scholar 

  • Malerba M, Crosti P, Cerana R (2011) Defense/stress responses activated by chitosan in sycamore cultured cells. Protoplasma. doi:10.1007/s00709-011-0264-7

    PubMed  Google Scholar 

  • Manjunatha G, Roopa KS, Prashanth GN, Shetty HS (2008) Chitosan enhances disease resistance in pearl millet against downy mildew caused by Sclerospora graminicola and defence-related enzyme activation. Pest Manag Sci 64:1250–1257

    Article  PubMed  CAS  Google Scholar 

  • Mannervik B, Guthenberg C (1981) Glutathione transferase (human placenta). Method Enzymol 77:231–235

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in Spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nge KL, New N, Chandrkrachang S, Stevens WF (2006) Chitosan as a growth stimulator in orchid tissue culture. Plant Sci 170:1185–1190

    Article  CAS  Google Scholar 

  • Ohta K, Tanguchi A, Konishi N, Hosoki T (1999) Chitosan treatment affects plant growth and flower quality in Eustuma grandiflorum. Hort Sci 34:233–234

    CAS  Google Scholar 

  • Pandey HC, Baig MJ, Chandra A, Bhatt RK (2010) Drought stress induced changes in lipid peroxidation and antioxidant system in genus Avena. J Environ Biol 31:435–440

    PubMed  CAS  Google Scholar 

  • Pornpienpakde P, Singhasurasak R, Pichyangkura R, Chaiyasap P, Bunjongrat R, Chadchawan S, Limpanavech P (2010) Improving the micropropagation efficiency of hybrid Dendrobium orchids with chitosan. Sci Hortic-Amsterdam 124:490–499

    Article  Google Scholar 

  • Povero G, Loreti E, Pucciariello C, Santaniello A, Tommaso DD, Tommaso GD, Kapetis D, Zolezzi F, Piaggesi A, Perata P (2011) Transcript profile of chitosan-treated Arabidopsis seedling. J Plant Res. doi:10.1007/s10265-010-0399-1

    PubMed  Google Scholar 

  • Santos ALW, Gueddari NEE, Trombotto S, Moerschbacher BM (2008) Partially acetylated chitosan oligo-and polymers induce an oxidative burst in suspension cultured cell of the Gymnosperm Araucaria angustifolia. Biomacromolecules 9:3411–3415

    Article  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizakia Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Shabala SN, Shabala SI, Martynenko AI, Babourina O, Newman IA (1998) Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. Aust J Plant Physiol 25:609–616

    Article  CAS  Google Scholar 

  • Sharathchandra RG, Raj SN, Shetty NP, Amruthesh KN, Shetty HS (2004) A Chitosan formulation Elexat induces downy mildew disease resistance and growth promotion in pearl millet. Crop Protect 23:881–888

    Article  CAS  Google Scholar 

  • Shin Y, Liu RH, Nock JF, Holliday D, Watkins CB (2007) Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid cencentrations, and antioxidant activity of strawberry. Postharvest Biol Tec 45:349–357

    Article  CAS  Google Scholar 

  • Sircelj H, Tausz M, Grill D, Batic F (2005) Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. J Plant Physiol 162:1308–1318

    Article  PubMed  CAS  Google Scholar 

  • Sopalun K, Thammasiri K, Ishikawa K (2010) Micropropagation of the Thai orchid Grammatophyllum speciosum Blume. Plant Cell Tiss Organ Cult 101:143–150

    Article  Google Scholar 

  • Srivastava N, Gonugunta VK, Puli MR, Raghavendra AS (2009) Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 229:757–765

    Article  PubMed  CAS  Google Scholar 

  • Tham LX, Nagasawa N, Matsuhashi S, Ishioka NS, Ito T, Kume T (2001) Effect of radiation-degraded chitosan on plants stressed with vanadium. Radial Phys Chem 61:171–175

    Article  Google Scholar 

  • Thapa G, Dey M, Sahoo L, Panda SK (2011) An insight into the drought stress induced alterations in plants. Biol Plantarum 55:603–613

    Article  CAS  Google Scholar 

  • Thikart P, Kowanij D, Selanan T, Vajrabhaya M, Bangyeekhun T, Chadchawan S (2005) Genetic variation and stress tolerance of somaclonal variegated rice and its original cultivar. J Sci Res Chula Univ 30:63–75

    CAS  Google Scholar 

  • Udomchalothorn T, Maneeprasobsuk S, Bangyeekhun E, Boon-Long P, Chadchawan S (2009) The role of the bifunctional enzyme, fructose-6-phosphate 2-kinase/fructose 26 bisphosphatase, in carbon partitioning during salt stress and salt tolerance in Rice (Oryza sativa L.). Plant Sci 176:334–341

    Article  CAS  Google Scholar 

  • Vajrabhaya M, Vajrabhaya T (1991) Somaclonal variation of salt tolerance in rice. Biotechnol Agric 14:368–382

    Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53:570–585

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Hu J, Li J, Wu X, Qian Y (2009) Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress. Plant Growth Regul 58:131–136

    Article  CAS  Google Scholar 

  • Zeng K, Deng Y, Ming J, Deng L (2010) Induction of disease resistance and ROS metabolism in navel oranges by chitosan. Sci Hortic-Amsterdam 126:223–228

    Article  CAS  Google Scholar 

  • Zhang J, Huang W, Pan Q, Liu Y (2005) Improvement of chilling tolerance and accumulation of heat shock proteins in grape berries (Vitis vinifera cv. Jingxiu) by heat treatment. Postharvest Biol Technol 38:80–90

    Article  CAS  Google Scholar 

  • Zhao TH, Wang JL, Wang Y, Sun JW, Ying Cao (2010) Effects of reactive oxygen species metabolic system on soybean (Glycine max) under exogenous chitosan to ozone stress. Bull Environ Contam Toxicol 85:59–63

    Article  PubMed  CAS  Google Scholar 

  • Zinovieva SV, Vasyukova NI, Udalova ZV, Gerasimova NG, Ozeretskovskaya OL (2011) Involvement of salicylic acid in induction of nematode resistance in plants. Plant Physiol 38:453–458

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (FW656B-55). The facilities were supported by the Thai Government Stimulus Package 2 (TKK2555), under PERFECTA and Faculty of Science Chulalongkorn University (AIBI). WP was supported by DPST, Thailand, and the Thai government budget 2011, under the Center of Excellence in Biodiversity, Faculty of Science, Chulalongkorn University (CEB_D_14_2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supachitra Chadchawan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pongprayoon, W., Roytrakul, S., Pichayangkura, R. et al. The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.). Plant Growth Regul 70, 159–173 (2013). https://doi.org/10.1007/s10725-013-9789-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-013-9789-4

Keywords

Navigation