[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Iridoids are natural glycation inhibitors

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycation of amino acid residues in proteins leads to the eventual formation of advanced glycation end products (AGEs). AGE formation significantly influences human health and the aging process. AGE accumulation rates may be slowed by modifications to lifestyle or by pharmacological strategies. But the use of therapeutic drugs is not an appropriate means of controlling AGEs within the general population. However, phytochemical constituents in plant-based foods exhibit anti-glycation activities and may be more appropriate for general consumption. Among these phytochemicals are iridoids. The anti-AGE potential of iridoids has been demonstrated in vitro and in vivo, while also revealing possible mechanisms of action. Inclusion of iridoid food sources in the diet may be a useful component of strategies intended to mitigate AGE accumulation within the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Luevano-Contreras C., Chapman-Novakofski K.: Dietary advanced glycation end products and aging. Nutrients. 2(12), 1247–1265 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vlassara H., Palace M.R.: Diabetes and advanced glycation endproducts. J. Intern. Med. 251(2), 87–101 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Higgins P.J., Bunn H.F.: Kinetic analysis of the nonenzymatic glycosylation of hemoglobin. J. Biol. Chem. 256(10), 5204–5208 (1981)

    CAS  PubMed  Google Scholar 

  4. Thornalley P.J., Langborg A., Minhas H.S.: Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. The Biochem. J. 344(1), 109–116 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. Ulrich P., Cerami A.: Protein glycation, diabetes, and aging. Recent Prog. Horm. Res. 56, 1–21 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. Miyata T., Wada Y., Cai Z., Iida Y., Horie K., Yasuda Y., Maeda K., Kurokawa K., van Ypersele de Strihou C.: Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney Int. 51(4), 1170–1181 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. Brownlee M.: Biochemistry and molecular cell biology of diabetic complications. Nature. 414(6865), 913–820 (2001)

    Article  CAS  Google Scholar 

  8. Ramasamy R.: Advanced glycation endproducts: from precursors to RAGE: round and round we go. Amino Acids. 42(4), 1151–1161 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. Sing R., Barden A., Mori T., Beilin L.: Advanced glycation end-products: a review. Diabetologia. 44(2), 129–146 (2001)

    Article  Google Scholar 

  10. Semba R.D., Nicklett E.J., Ferrucci L.: Does accumulation of advanced glycation end products contribute to the aging phenotype? J. Gerontol. A Biol. Sci. Med. Sci. 65(9), 963–975 (2010)

    Article  PubMed  CAS  Google Scholar 

  11. Wolffenbuttel B.H., van Haeften T.W.: Prevention of complications in non-insulin-dependent diabetes mellitus (NIDDM). Drugs. 50(2), 263–288 (1995)

    Article  CAS  PubMed  Google Scholar 

  12. Yamagishi S., Nakamura K., Matsui T., Ueda S., Noda Y., Imaizumi T.: Inhibitors of advanced glycation end products (AGEs): potential utility for the treatment of cardiovascular disease. Cardiovasc. Ther. 26(1), 50–58 (2008)

    CAS  PubMed  Google Scholar 

  13. Alam A., Ahsan A., Alam S.: Newer insights in drugs inhibiting formation and accumulation of advanced glycation end products. J. Biochem. Tech. 5(1), 666–672 (2013)

    CAS  Google Scholar 

  14. Cerami C., Founds H., Nicholl I., Mitsuhashi T., Giordano D., Vanpatten S., Lee A., Al-Abed Y., Vlassara H., Bucala R., Cerami A.: Tobacco smoke is a source of toxic reactive glycation products. Proc. Natl. Acad. Sci. U. S. A. 94(25), 13915–13920 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamagishi S., Nakajima S., Uwaya A., Isami F.: Association between skin autofluorescence and food and lifestyle measured with the TruAge scanner. Pharma Medica. 31(10), 197–203 (2013) [Article in Japanese]

    Google Scholar 

  16. Nomoto K., Yagi M., Arita S., Ogura M., Yonei Y.: Skin Accumulation of Advanced Glycation End Products and Lifestyle Behaviors in Japanese. Anti-Aging Med. 9(6), 165–173 (2012)

    Google Scholar 

  17. Peng X., Ma J., Chen F., Wang M.: Naturally occurring inhibitors against the formation of advanced glycation end-products. Food Funct. 2(6), 289–301 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. Nagai R., Shirakawa J., Ohno R., Moroishi N., Nagai M.: Inhibition of AGEs formation by natural products. Amino Acids. 46(2), 261–266 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. Rahbar S., Figarola J.L.: Novel inhibitors of advanced glycation endproducts. Arch. Biochem. Biophys. 419(1), 63–79 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Odjakova M., Popova E., Al Sharif M., Mironova R.: Plant-Derived Agents with Anti-Glycation Activity. In: Petrescu S. (ed.) Glycosylation, pp. 223–256. InTech, Rijeka (2012)

    Google Scholar 

  21. Fujikawa T., Hirata T., Hosoo S., Nakajima K., Wada A., Yurugi Y., Soya H., Matsui T., Yamaguchi A., Ogata M., Nishibe S.: Asperuloside stimulates metabolic function in rats across several organs under high-fat diet conditions, acting like the major ingredient of Eucommia leaves with anti-obesity activity. J. Nutr. Sci. 1(e10), 1–11 (2012)

    Google Scholar 

  22. Li B., Zhang D.M., Luo Y.M., Chen X.G.: Three new and antitumor anthraquinone glycosides from Lasianthus acuminatissimus MERR. Chem. Pharm. Bull. (Tokyo). 54(3), 297–300 (2006)

    Article  CAS  Google Scholar 

  23. Nakamura T., Nakazawa Y., Onizuka S., Satoh S., Chiba A., Sekihashi K., Miura A., Yasugahira N., Sasaki Y.F.: Antimutagenicity of Tochu tea (an aqueous extract of Eucommia ulmoides leaves): 1. The clastogen-suppressing effects of Tochu tea in CHO cells and mice. Mutat. Res. 388(1), 7–20 (1997)

    CAS  Google Scholar 

  24. Qiu J., Chi G., Wu Q., Ren Y., Chen C., Feng H.: Pretreatment with the compound asperuloside decreases acute lung injury via inhibiting MAPK and NFκB signaling in a murine model. Int. Immunopharmacol. 31, 109–115 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. Kim D.H., Lee H.J., Oh Y.J., Kim M.J., Kim S.H., Jeong T.S., Baek N.I.: Iridoid glycosides isolated from Oldenlandia diffusa inhibit LDL-oxidation. Arch. Pharm. Res. 28(10), 1156–1160 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. Ishiguro K., Yamaki M., Takagi S.: Studies on the iridoid related compounds. I. On the antimicrobial activity of aucubigenin and certain iridoid aglycones. Yakugaku Zasshi. 102(8), 755–759 (1982)

    CAS  PubMed  Google Scholar 

  27. West B.J., Deng S., Jensen C.J.: Nutrient and phytochemical analyses of processed noni puree. Food Res. Int. 44(7), 2295–2301 (2011)

    Article  CAS  Google Scholar 

  28. Wang M.Y., Peng L., Weidenbacher-Hoper V., Deng S., Anderson G., West B.J.: Noni juice improves serum lipid profiles and other risk markers in cigarette smokers. Scientific World Journal. 2012(article ID), 594657 (2012)

    PubMed  PubMed Central  Google Scholar 

  29. Wang X., Tang S., Zhai H., Duan H.: Studies on anti-tumor metastatic constituents from Ardisia crenata. Zhongguo Zhong Yao Za Zhi. 36(7), 881–885 (2011)

    CAS  PubMed  Google Scholar 

  30. Ling S.K., Tanaka T., Kouno I.: Effects of iridoids on lipoxygenase and hyaluronidase activities and their activation by beta-glucosidase in the presence of amino acids. Biol. Pharm. Bull. 26(3), 352–356 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. Akihisa T., Matsumoto K., Tokuda H., Yasukawa K., Seino K., Nakamoto K., Kuninaga H., Suzuki T., Kimura Y.: Anti-inflammatory and potential cancer chemopreventive constituents of the fruits of Morinda citrifolia (Noni). J. Nat. Prod. 70(5), 754–757 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. Shim K.M., Choi S.H., Jeong M.J., Kang S.S.: Effects of aucubin on the healing of oral wounds. In Vivo. 21(6), 1037–1041 (2007)

    CAS  PubMed  Google Scholar 

  33. Kang Z., Wu W.H., Wang J.J., Ouyang D.S.: Research advances in pharmacology of aucubin and aucubigenin. Zhongguo Zhong Yao Za Zhi. 32(24), 2585–2587 (2007)

    CAS  PubMed  Google Scholar 

  34. Chang I.M.: Liver-protective activities of aucubin derived from traditional oriental medicine. Res. Commun. Mol. Pathol. Pharmacol. 102(2), 189–204 (1998)

    CAS  PubMed  Google Scholar 

  35. Ha H., Ho J., Shin S., Kim H., Koo S., Kim I.H., Kim C.: Effects of Eucommiae Cortex on osteoblast-like cell proliferation and osteoclast inhibition. Arch. Pharm. Res. 26(11), 929–936 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. Wan D., Xue L., Zhu H., Luo Y.: Catalpol induces neuroprotection and prevents memory dysfunction through the cholinergic system and BDNF. Evid. Based Complement. Alternat. Med. 2013(article ID), 134852 (2013)

    Google Scholar 

  37. Bao Q., Shen X., Qian L., Gong C., Nie M., Dong Y.: Anti-diabetic activities of catalpol in db/db mice. Korean J. Physiol. Pharmacol. 20(2), 153–160 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang, S., Deng, H., Zhang, Q., Xie, J., Zeng, H., Jin, X., Ling, Z., Shan, Q., Liu, M., Ma, Y., Tang, J., Wei, Q.: Amelioration of diabetic mouse nephropathy by catalpol correlates with down-regulation of Grb10 expression and activation of insulin-like growth factor 1/insulin-like growth factor 1 receptor signaling. PLoS One 11(3), article ID e0151857 (2016)

  39. Tian Y.Y., Jiang B., An L.J., Bao Y.M.: Neuroprotective effect of catalpol against MPP(+)-induced oxidative stress in mesencephalic neurons. Eur. J. Pharmacol. 568(1–3), 142–148 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. Huang W.J., Niu H.S., Lin M.H., Cheng J.T., Hsu F.L.: Antihyperglycemic effect of catalpol in streptozotocin-induced diabetic rats. J. Nat. Prod. 73(6), 1170–1172 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. Kang D.G., Moon M.K., Lee A.S., Kwon T.O., Kim J.S., Lee H.S.: Cornuside suppresses cytokine-induced proinflammatory and adhesion molecules in the human umbilical vein endothelial cells. Biol. Pharm. Bull. 30(9), 1796–1799 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. Song S.Z., Choi Y.H., Jin G.Y., Li G.Z., Yan G.H.: Protective effect of cornuside against carbon tetrachloride-induced acute hepatic injury. Biosci. Biotechnol. Biochem. 75(4), 656–661 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. Li L., Jin G., Jiang J., Zheng M., Jin Y., Lin Z., Li G., Choi Y., Yan G.: Cornuside inhibits mast cell-mediated allergic response by down-regulating MAPK and NF-κB signaling pathways. Biochem. Biophys. Res. Commun. 473(2), 408–414 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. Deng, S, West, BJ, Jensen, C.J.: UPLC-TOF-MS characterization and identification of bioactive iridoids in Cornus mas fruit. J. Anal. Methods Chem. 2013, article ID 710972 (2013)

  45. Choi Y.H., Jin G.Y., Li G.Z., Yan G.H.: Cornuside suppresses lipopolysaccharide-induced inflammatory mediators by inhibiting nuclear factor-kappa B activation in RAW 264.7 macrophages. Biol. Pharm. Bull. 34(7), 959–966 (2011)

    Article  CAS  PubMed  Google Scholar 

  46. Jiang W.L., Zhang S.M., Tang X.X., Liu H.Z.: Protective roles of cornuside in acute myocardial ischemia and reperfusion injury in rats. Phytomedicine. 18(4), 266–271 (2011)

    Article  CAS  PubMed  Google Scholar 

  47. Jiang W.L., Chen X.G., Zhu H.B., Tian J.W.: Effect of cornuside on experimental sepsis. Planta Med. 75(6), 614–619 (2009)

    Article  CAS  PubMed  Google Scholar 

  48. Lin M.H., Liu H.K., Huang W.J., Huang C.C., Wu T.H., Hsu F.L.: Evaluation of the potential hypoglycemic and Beta-cell protective constituents isolated from Corni fructus to tackle insulin-dependent diabetes mellitus. J. Agric. Food Chem. 59(14), 7743–7751 (2011)

    Article  CAS  PubMed  Google Scholar 

  49. Wang M.Y., Peng L., Weidenbacher-Hoper V., Deng S., Anderson G., West B.J.: Noni juice improves serum lipid profiles and other risk markers in cigarette smokers. Sci. World J. 2012, Article ID 594657 (2012)

    Google Scholar 

  50. Ma D.L., Chen M., Su C.X., West B.J.: In vivo antioxidant activity of deacetylasperulosidic acid in noni. J. Anal. Methods Chem. 2013, article ID 804504 (2013)

    Article  CAS  Google Scholar 

  51. Kapadia G.J., Sharma S.C., Tokuda H., Nishino H., Ueda S.: Inhibitory effect of iridoids on Epstein–Barr virus activation by a short-term in vitro assay for anti-tumor promoters. Cancer Lett. 102(1–2), 223–226 (1996)

    Article  CAS  PubMed  Google Scholar 

  52. Murata K., Abe Y., Futamura-Masuda M., Uwaya A., Isami F., Deng S., Matsuda H.: Effect of Morinda citrifolia fruit extract and its iridoid glycosides on blood fluidity. J. Nat. Med. 68(3), 498–504 (2014)

    Article  CAS  PubMed  Google Scholar 

  53. Liu W., Li G., Hölscher C., Li L.: Neuroprotective effects of geniposide on Alzheimer's disease pathology. Rev. Neurosci. 26(4), 371–383 (2015)

    Article  PubMed  CAS  Google Scholar 

  54. Zhang W.L., Zhu L., Jiang J.G.: Active ingredients from natural botanicals in the treatment of obesity. Obes. Rev. 15(12), 957–967 (2014)

    Article  CAS  PubMed  Google Scholar 

  55. Yao D.D., Yang L., Wang Y., Liu C., Wei Y.J., Jia X.B., Yin W., Shu L.: Geniposide promotes beta-cell regeneration and survival through regulating β-catenin/TCF7L2 pathway. Cell Death Dis. 6, article ID e1746 (2015)

    Article  CAS  Google Scholar 

  56. Hwang H., Kim C., Kim S.M., Kim W.S., Choi S.H., Chang I.M., Ahn K.S.: The hydrolyzed products of iridoid glycoside with β-glucosidase treatment exert anti-proliferative effects through suppression of STAT3 activation and STAT3-regulated gene products in several human cancer cells. Pharm. Biol. 50(1), 8–17 (2012)

    Article  CAS  PubMed  Google Scholar 

  57. Liao P., Liu L., Wang B., Li W., Fang X., Guan S.: Baicalin and geniposide attenuate atherosclerosis involving lipids regulation and immunoregulation in ApoE−/− mice. Eur. J. Pharmacol. 740, 488–495 (2014)

    Article  CAS  PubMed  Google Scholar 

  58. Sun P., Chen J.Y., Li J., Sun M.R., Mo W.C., Liu K.L., Meng Y.Y., Liu Y., Wang F., He R.Q., Hua Q.: The protective effect of geniposide on human neuroblastoma cells in the presence of formaldehyde. BMC Complement. Altern. Med. 13, article ID 152 (2013)

    Google Scholar 

  59. Son M., Lee M., Ryu E., Moon A., Jeong C.S., Jung Y.W., Park G.H., Sung G.H., Cho H., Kang H.: Genipin as a novel chemical activator of EBV lytic cycle. J. Microbiol. 53(2), 155–165 (2015)

    Article  CAS  PubMed  Google Scholar 

  60. Manon L., Béatrice B., Thierry O., Jocelyne P., Fathi M., Evelyne O., Alain B.: Antimutagenic potential of harpagoside and Harpagophytum procumbens against 1-nitropyrene. Pharmacogn. Mag. 11(Suppl 1), S29–S36 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Sun X., Xiong Z., Zhang Y., Meng Y., Xu G., Xia Z., Li J., Zhang R., Ke Z., Xia Z., Hu Y.: Harpagoside attenuates MPTP/MPP+ induced dopaminergic neurodegeneration and movement disorder via elevating glial cell line-derived neurotrophic factor. J. Neurochem. 120(6), 1072–1083 (2012)

    CAS  PubMed  Google Scholar 

  62. Gagnier J.J., Chrubasik S., Manheimer E.: Harpgophytum procumbens for osteoarthritis and low back pain: a systematic review. BMC Complement. Altern. Med. 4, article ID 13 (2004)

    Article  Google Scholar 

  63. Georgiev M.I., Ivanovska N., Alipieva K., Dimitrova P., Verpoorte R.: Harpagoside: from Kalahari Desert to pharmacy shelf. Phytochemistry. 92, 8–15 (2013)

    Article  CAS  PubMed  Google Scholar 

  64. Ma W., Wang K.J., Cheng C.S., Yan G.Q., Lu W.L., Ge J.F., Cheng Y.X., Li N.: Bioactive compounds from Cornus officinalis fruits and their effects on diabetic nephropathy. J. Ethnopharmacol. 153(3), 840–845 (2014)

    Article  CAS  PubMed  Google Scholar 

  65. Yamabe N., Noh J.S., Park C.H., Kang K.S., Shibahara N., Tanaka T., Yokozawa T.: Evaluation of loganin, iridoid glycoside from Corni Fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice. Eur. J. Pharmacol. 648(1–3), 179–187 (2010)

    Article  CAS  PubMed  Google Scholar 

  66. Park C.H., Tanaka T., Kim J.H., Cho E.J., Park J.C., Shibahara N., Yokozawa T.: Hepato-protective effects of loganin, iridoid glycoside from Corni Fructus, against hyperglycemia-activated signaling pathway in liver of type 2 diabetic db/db mice. Toxicology. 290(1), 14–21 (2011)

    Article  CAS  PubMed  Google Scholar 

  67. Park C.H., Yamabe N., Noh J.S., Kang K.S., Tanaka T., Yokozawa T.: The beneficial effects of morroniside on the inflammatory response and lipid metabolism in the liver of db/db mice. Biol. Pharm. Bull. 32(10), 1734–1740 (2009)

    Article  CAS  PubMed  Google Scholar 

  68. Wang W., Xu J., Li L., Wang P., Ji X., Ai H., Zhang L., Li L.: Neuroprotective effect of morroniside on focal cerebral ischemia in rats. Brain Res. Bull. 83(5), 196–201 (2010)

    Article  CAS  PubMed  Google Scholar 

  69. Barbaro B., Toietta G., Maggio R., Arciello M., Tarocchi M., Galli A., Balsano C.: Effects of the olive-derived polyphenol oleuropein on human health. Int. J. Mol. Sci. 15(10), 18508–18524 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Omar S.H.: Oleuropein in olive and its pharmacological effects. Sci. Pharm. 78(2), 133–154 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sumiyoshi M., Kimura Y.: Effects of olive leaf extract and its main component oleuroepin on acute ultraviolet B irradiation-induced skin changes in C57BL/6 J mice. Phytother. Res. 24(7), 995–1003 (2010)

    CAS  PubMed  Google Scholar 

  72. Giamarellos-Bourboulis E.J., Geladopoulos T., Chrisofos M., Koutoukas P., Vassiliadis J., Alexandrou I., Tsaganos T., Sabracos L., Karagianni V., Pelekanou E., Tzepi I., Kranidioti H., Koussoulas V., Giamarellou H.: Oleuropein: a novel immunomodulator conferring prolonged survival in experimental sepsis by Pseudomonas aeruginosa. Shock. 26(4), 410–416 (2006)

    Article  CAS  PubMed  Google Scholar 

  73. Zhou J.: Bioactive glycosides from Chinese medicines. Mem. Inst. Oswaldo Cruz. 86(Suppl. 2), 231–234 (1991)

    Article  PubMed  Google Scholar 

  74. Sun H., Li L., Zhang A., Zhang N., Lv H., Sun W., Wang X.: Protective effects of sweroside on human MG-63 cells and rat osteoblasts. Fitoterapia. 84, 174–179 (2013)

    Article  CAS  PubMed  Google Scholar 

  75. Oztürk N., Korkmaz S., Oztürk Y., Başer K.H.: Effects of gentiopicroside, sweroside and swertiamarine, secoiridoids from gentian (Gentiana lutea ssp. symphyandra), on cultured chicken embryonic fibroblasts. Planta Med. 72(4), 289–294 (2006)

    Article  PubMed  CAS  Google Scholar 

  76. Kumarasamy Y., Nahar L., Cox P.J., Jaspars M., Sarker S.D.: Bioactivity of secoiridoid glycosides from Centaurium erythraea. Phytomedicine. 10(4), 344–347 (2003)

    Article  CAS  PubMed  Google Scholar 

  77. Deng S., West B., Palu A., Jensen J.: Determination and comparative analysis of major iridoids in different parts and cultivation sources of Morinda citrifolia. Phytochem. Anal. 22(1), 26–30 (2011)

    Article  CAS  PubMed  Google Scholar 

  78. Ranalli R., Marchegiani D., Contento S., Girardi F., Nicolosi M.P., Brullo M.D.: Variations of iridoid oleuropein in Italian olive varieties during growth and maturation. Eur. J. Lipid Sci. Tech. 111(7), 678–687 (2009)

    Article  CAS  Google Scholar 

  79. Bianchi G.: Lipids and phenols in table olives. Eur. J. Lipid Sci. Tec. 105(5), 229–242 (2003)

    Article  CAS  Google Scholar 

  80. Tuck K.L., Hayball P.J.: Major phenolic compounds in olive oil: metabolism and health effects. J. Nutr. Biochem. 13(11), 636–644 (2002)

    Article  CAS  PubMed  Google Scholar 

  81. Savournin C., Baghdikian B., Elias R., Dargouth-Kesraoui F., Boukef K., Balansard G.: Rapid high-performance liquid chromatography analysis for the quantitative determination of oleuropein in Olea europaea leaves. J. Agric. Food Chem. 49(2), 618–621 (2001)

    Article  CAS  PubMed  Google Scholar 

  82. Lockyer S., Corona G., Yaqoob P., Spencer J.P., Rowland I.: Secoiridoids delivered as olive leaf extract induce acute improvements in human vascular function and reduction of an inflammatory cytokine: a randomised, double-blind, placebo-controlled, cross-over trial. Br. J. Nutr. 114(1), 75–83 (2015)

    Article  CAS  PubMed  Google Scholar 

  83. El S.N., Karakaya S.: Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr. Rev. 67(11), 632–638 (2009)

    Article  PubMed  Google Scholar 

  84. Jensen S.R., Kjaer A., Nielsen B.J.: The genus Comus: non-flavonoid glucosides as taxonomic markers. Biochem. System. Ecol. 3(2), 75–78 (1975)

    Article  CAS  Google Scholar 

  85. Du W., Cai H., Wang M., Ding X., Yang H., Cai B.: Simultaneous determination of six active components in crude and processed Fructus Corni by high performance liquid chromatography. J. Pharm. Biomed. Anal. 48(1), 194–197 (2008)

    Article  CAS  PubMed  Google Scholar 

  86. Kucharskaa A.Z., Szumnyb A., Sokół-Łętowskaa A., Pióreckic N., Klymenkoe S.V.: Iridoids and anthocyanins in cornelian cherry (Cornus mas L.) cultivars. J. Food Comp. Anal. 40, 95–102 (2015)

    Article  CAS  Google Scholar 

  87. Yamabe N., Kang K.S., Matsuo Y., Tanaka T., Yokozawa T.: Identification of antidiabetic effect of iridoid glycosides and low molecular weight polyphenol fractions of Corni Fructus, a constituent of Hachimi-jio-gan, in streptozotocin-induced diabetic rats. Biol. Pharm. Bull. 30(7), 1289–1296 (2007)

    Article  CAS  PubMed  Google Scholar 

  88. West B.J., Deng S., Jensen C.J., Palu A.K., Berrio L.F.: Antioxidant, toxicity, and iridoid tests of processed Cornelian cherry fruits. Int. J. Food Sc. Tech. 47(7), 1392–1397 (2012)

    Article  CAS  Google Scholar 

  89. Jensen, H.D., Krogfelt, K.A., Cornett, C., Hansen, S.H., Christensen, S.B.: Hydrophilic carboxylic acids and iridoid glycosides in the juice of American and European cranberries (Vaccinium macrocarpon and V. oxycoccos), lingonberries (V. vitis-idaea), and blueberries (V. myrtillus). J. Agric. Food Chem. 50(23), 6871–6874 (2002)

  90. Zhang Q., Su Y., Zhang J.: Seasonal difference in antioxidant capacity and active compounds contents of Eucommia ulmoides Oliver leaf. Molecules. 18(2), 1857–1868 (2013)

    Article  CAS  PubMed  Google Scholar 

  91. Li C., Dong J., Tian J., Deng Z., Song X.: LC/MS/MS determination and pharmacokinetic study of iridoid glycosides monotropein and deacetylasperulosidic acid isomers in rat plasma after oral administration of Morinda officinalis extract. Biomed. Chromatogr. 30(2), 163–168 (2016)

    Article  CAS  PubMed  Google Scholar 

  92. Luo, Y.D., Chen, J., Cao, J., Wen, X.D., Li, P.: Determination of sweroside in rat plasma and bile for oral bioavailability and hepatobiliary excretion. Chem. Pharm. Bull. (Tokyo) 57(1), 79–83 (2009)

  93. Suh N.J., Shim C.K., Lee M.H., Kim S.K., Chang I.M.: Pharmacokinetic study of an iridoid glucoside: aucubin. Pharm. Res. 8(8), 1059–1063 (1991)

    Article  CAS  PubMed  Google Scholar 

  94. de Bock M., Thorstensen E.B., Derraik J.G., Henderson H.V., Hofman P.L., Cutfield W.S.: Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol. Nutr. Food Res. 57(11), 2079–2085 (2013)

    Article  CAS  PubMed  Google Scholar 

  95. Jemai H., El Feki A., Sayadi S.: Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. J. Agric. Food Chem. 57(19), 8798–8804 (2009)

    Article  CAS  PubMed  Google Scholar 

  96. Carluccio M.A., Siculella L., Ancora M.A., Massaro M., Scoditti E., Storelli C., Visioli F., Distante A., De Caterina R.: Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler. Thromb. Vasc. Biol. 23(4), 622–629 (2003)

    Article  CAS  PubMed  Google Scholar 

  97. Elamin M.H., Daghestani M.H., Omer S.A., Elobeid M.A., Virk P., Al-Olayan E.M., Hassan Z.K., Mohammed O.B., Aboussekhra A.: Olive oil oleuropein has anti-breast cancer properties with higher efficiency on ER-negative cells. Food Chem. Toxicol. 53, 310–316 (2013)

    Article  CAS  PubMed  Google Scholar 

  98. Scoditti, E., Calabriso, N., Massaro, M., Pellegrino, M., Storelli, C., Martines, G., De Caterina, R., Carluccio, M.A.: Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch. Biochem. Biophys. 527(2), 81–89 (2012a)

  99. Kontogianni V.G., Charisiadis P., Margianni E., Lamari F.N., Gerothanassis I.P., Tzakos A.G.: Olive leaf extracts are a natural source of advanced glycation end product inhibitors. J. Med. Food. 16(9), 817–822 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Navarro M., Morales F.J.: Mechanism of reactive carbonyl species trapping by hydroxytyrosol under simulated physiological conditions. Food Chem. 175, 92–99 (2015)

    Article  CAS  PubMed  Google Scholar 

  101. Wainstein J., Ganz T., Boaz M., Bar Dayan Y., Dolev E., Kerem Z., Madar Z.: Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J. Med. Food. 15(7), 605–610 (2012)

    Article  PubMed  Google Scholar 

  102. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA): Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL-cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defences against external agents” (ID 3467) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal 9(4), article ID 2033 (2011)

  103. Marrugat J., Covas M.I., Fitó M., Schröder H., Miró-Casas E., Gimeno E., López-Sabater M.C., de la Torre R., Farré M.: SOLOS Investigators: Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation–a randomized controlled trial. Eur. J. Nutr. 43(3), 140–147 (2004)

    Article  CAS  PubMed  Google Scholar 

  104. Covas M.I., de la Torre K., Farré-Albaladejo M., Kaikkonen J., Fitó M., López-Sabater C., Pujadas-Bastardes M.A., Joglar J., Weinbrenner T., Lamuela-Raventós R.M., de la Torre R.: Postprandial LDL phenolic content and LDL oxidation are modulated by olive oil phenolic compounds in humans. Free Radic. Biol. Med. 40(4), 608–616 (2006)

    Article  CAS  PubMed  Google Scholar 

  105. de la Torre-Carbot K., Chávez-Servín J.L., Jaúregui O., Castellote A.I., Lamuela-Raventós R.M., Nurmi T., Poulsen H.E., Gaddi A.V., Kaikkonen J., Zunft H.F., Kiesewetter H., Fitó M., Covas M.I., López-Sabater M.C.: Elevated circulating LDL phenol levels in men who consumed virgin rather than refined olive oil are associated with less oxidation of plasma LDL. J. Nutr. 140(3), 501–508 (2010)

    Article  PubMed  CAS  Google Scholar 

  106. Sajithlal G.B., Chandrakasan G.: Role of lipid peroxidation products in the formation of advanced glycation end products: An in vitro study on collagen. Proc. Indian Acad. Sci. (Chem. Sci.). 111(1), 215–229 (1999)

    CAS  Google Scholar 

  107. Navarro M., Morales F.J.: In vitro investigation on the antiglycative and carbonyl trapping activities of hydroxytyrosol. Eur. Food Res, Tech (2016). doi:10.1007/s00217-015-2614-8

    Google Scholar 

  108. Kim H.Y., Moon B.H., Lee H.J., Choi D.H.: Flavonol glycosides from the leaves of Eucommia ulmoides O. with glycation inhibitory activity. J. Ethnopharmacol. 93(2–3), 227–230 (2004)

    Article  CAS  PubMed  Google Scholar 

  109. Jin L., Xue H.Y., Jin L.J., Li S.Y., Xu Y.P.: Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur. J. Pharmacol. 582(1–3), 162–167 (2008)

    Article  CAS  PubMed  Google Scholar 

  110. Park K.S.: Aucubin, a naturally occurring iridoid glycoside inhibits TNF-α-induced inflammatory responses through suppression of NF-κB activation in 3 T3-L1 adipocytes. Cytokine. 62(3), 407–412 (2013)

    Article  CAS  PubMed  Google Scholar 

  111. Shin J.S., Yun K.J., Chung K.S., Seo K.H., Park H.J., Cho Y.W., Baek N.I., Jang D., Lee K.T.: Monotropein isolated from the roots of Morinda officinalis ameliorates proinflammatory mediators in RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis via NF-κB inactivation. Food Chem. Toxicol. 53, 263–271 (2013)

    Article  CAS  PubMed  Google Scholar 

  112. Hong L., Huiqin X., Yunjie H.: Impact of fructus Corni iridoid glycosides on ACE-P of rat serum in vascular complications of diabetes. World Sci. Tech. – Modern. Trad. Chinese Med. Materia Medica. 5(6), 51–53 (2003)

    Google Scholar 

  113. Shi Y., Xu H.Q.: Protecting effect of total iridoid glycoside in fructus Corni officinalis on experimental diabetes models with heart disease. J. Nanjing Univ. Trad. Chinese Med. 2006(1), 35–37 (2006)

    Google Scholar 

  114. Yamabe N., Kang K.S., Goto E., Tanaka T., Yokozawa T.: Beneficial effect of Corni fructus, a constituent of hachimi-jio-gan, on advanced glycation end-product-mediated renal injury in streptozotocin-treated diabetic rats. Biol. Pharm. Bull. 30(3), 520–526 (2007)

    Article  CAS  PubMed  Google Scholar 

  115. Yamabe N., Kang K.S., Matsuo Y., Tanaka T., Yokozawa T.: Identification of antidiabetic effect of iridoid glycosides and low molecular weight polyphenol fractions of Corni Fructus, a constituent of Hachimi-jio-gan, in streptozotocin-induced diabetic rats. Biol. Pharm. Bull. 30(7), 1289–1296 (2007)

    Article  CAS  PubMed  Google Scholar 

  116. Xu H.Q., Hao H.P.: Effects of iridoid total glycoside from Cornus officinalis on prevention of glomerular overexpression of transforming growth factor beta 1 and matrixes in an experimental diabetes model. Biol. Pharm. Bull. 27(7), 1014–1018 (2004)

    Article  CAS  PubMed  Google Scholar 

  117. Rumble J.R., Cooper M.E., Soulis T., Cox A., Wu L., Youssef S., Jasik M., Jerums G., Gilbert R.E.: Vascular hypertrophy in experimental diabetes. Role of advanced glycation end products. J. Clin. Invest. 99(5), 1016–1027 (1997)

    CAS  PubMed  Google Scholar 

  118. Park C.H., Noh J.S., Kim J.H., Tanaka T., Zhao Q., Matsumoto K., Shibahara N., Yokozawa T.: Evaluation of morroniside, iridoid glycoside from Corni Fructus, on diabetes-induced alterations such as oxidative stress, inflammation, and apoptosis in the liver of type 2 diabetic db/db mice. Biol. Pharm. Bull. 34(10), 1559–1565 (2011)

    Article  CAS  PubMed  Google Scholar 

  119. Liu K., Xu H., Lv G., Liu B., Lee M.K., Lu C., Lv X., Wu Y.: Loganin attenuates diabetic nephropathy in C57BL/6 J mice with diabetes induced by streptozotocin and fed with diets containing high level of advanced glycation end products. Life Sci. 123, 78–85 (2015)

    Article  CAS  PubMed  Google Scholar 

  120. Yokozawa T., Yamabe N., Kim H.Y., Kang K.S., Hur J.M., Park C.H., Tanaka T.: Protective effects of morroniside isolated from Corni Fructus against renal damage in streptozotocin-induced diabetic rats. Biol. Pharm. Bull. 31(7), 1422–1428 (2008)

    Article  CAS  PubMed  Google Scholar 

  121. Xu H., Shen J., Liu H., Shi Y., Li L., Wei M.: Morroniside and loganin extracted from Cornus officinalis have protective effects on rat mesangial cell proliferation exposed to advanced glycation end products by preventing oxidative stress. Can. J. Physiol. Pharmacol. 84(12), 1267–1273 (2006)

    Article  CAS  PubMed  Google Scholar 

  122. Meerwaldt R., Graaff R., Oomen P.H.N., Links T.P., Jager J.J., Alderson N.L., Thorpe S.R., Baynes J.W., Gans R.O.B., Smit A.J.: Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 47(7), 1324–1330 (2004)

    Article  CAS  PubMed  Google Scholar 

  123. West B.J., Uwaya A., Isami F., Deng S., Nakajima S., Jensen C.J.: Antiglycation activity of iridoids and their food sources. Int. J. Food Sci. 2014, article ID 276950 (2014)

    Article  Google Scholar 

  124. Cerami C., Founds H., Nicholl I., Mitsuhashi T., Giordano D., Vanpatten S., Lee A., Al-Abed Y., Vlassara H., Bucala R., Cerami A.: Tobacco smoke is a source of toxic reactive glycation products. Proc. Nat. Acad. Sci. U.S.A. 94(25), 13915–13920 (1997)

    Article  CAS  Google Scholar 

  125. Ambrose J.A., Barua R.S.: The pathophysiology of cigarette smoking and cardiovascular disease: an update. J. Am. Coll. Cardiol. 43(10), 1731–1737 (2004)

    Article  CAS  PubMed  Google Scholar 

  126. Reynolds P.R., Kasteler S.D., Schmitt R.E., Hoidal J.R.: Receptor for advanced glycation end-products signals through Ras during tobacco smoke-induced pulmonary inflammation. Am. J. Respir. Cell Mol. Biol. 45(2), 411–418 (2011)

    Article  CAS  PubMed  Google Scholar 

  127. Ramasamy R.: Advanced glycation endproducts: from precursors to RAGE: round and round we go. Amino Acids. 42(4), 1151–1161 (2012)

    Article  CAS  PubMed  Google Scholar 

  128. Nicholl I.D., Stitt A.W., Moore J.E., Ritchie A.J., Archer D.B., Bucala R.: Increased levels of advanced glycation endproducts in the lenses and blood vessels of cigarette smokers. Mol. Med. 4(9), 594–601 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Koetsier M., Lutgers H.L., de Jonge C., Links T.P., Smit A.J., Graaff R.: Reference values of skin autofluorescence. Diabetes Technol. Ther. 12(5), 399–403 (2010)

    Article  CAS  PubMed  Google Scholar 

  130. Yue X., Hu H., Koetsier M., Graaff R., Han C.: Reference values for the Chinese population of skin autofluorescence as a marker of advanced glycation end products accumulated in tissue. Diabet. Med. 28(7), 818–823 (2011)

    Article  CAS  PubMed  Google Scholar 

  131. Monami M., Lamanna C., Gori F., Bartalucci F., Marchionni N., Mannucci E.: Skin autofluorescence in type 2 diabetes: beyond blood glucose. Diabetes Res. Clin. Pract. 79(1), 56–60 (2008)

    Article  CAS  PubMed  Google Scholar 

  132. Sandby-Moller J., Thieden E., Philipsen P.A., Heydenreich J., Wulf H.C.: Skin autofluorescence as a biological UVR dosimeter. Photodermatol. Photoimmunol. Photomed. 20(1), 33–40 (2004)

    Article  CAS  PubMed  Google Scholar 

  133. Nomoto K., Yagi M., Arita S., Ogura M., Yonei Y.: Skin accumulation of advanced glycation end products and lifestyle behaviors in Japanese. Anti-aging Med. 9(6), 165–173 (2012)

    Google Scholar 

  134. Hoonhorst S.J., Lo Tam Loi A.T., Hartman J.E., Telenga E.D., van den Berge M., Koenderman L., Lammers J.W., Marike Boezen H., Postma D.S., Ten Hacken N.H.: Advanced glycation end products in the skin are enhanced in COPD. Metabolism. 63(9), 1149–1156 (2014)

    Article  CAS  PubMed  Google Scholar 

  135. Gopal P., Reynaert N.L., Scheijen J.L., Engelen L., Schalkwijk C.G., Franssen F.M., Wouters E.F., Rutten E.P.: Plasma advanced glycation end-products and skin autofluorescence are increased in COPD. Eur. Respir. J. 43(2), 430–438 (2014)

    Article  CAS  PubMed  Google Scholar 

  136. Wang M.Y., Lutfiyya M.N., Weidenbacher-Hoper V., Anderson G., Su C.X., West B.J.: Antioxidant activity of noni juice in heavy smokers. Chem. Cent. J. 3, article ID 13 (2009)

    Article  CAS  Google Scholar 

  137. Wang M.Y., Peng L., Jensen C.J., Deng S., West B.J.: Noni juice reduces lipid peroxidation–derived DNA adducts in heavy smokers. Food Sci. Nutr. 1(2), 141–149 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Brownlee M.: Biochemistry and molecular cell biology of diabetic complications. Nature. 414(6865), 913–820 (2001)

    Article  CAS  Google Scholar 

  139. Miyata T., Wada Y., Cai Z., Iida Y., Horie K., Yasuda Y., Maeda K., Kurokawa K., van Ypersele de Strihou C.: Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney Int. 51(4), 1170–1181 (1997)

    Article  CAS  PubMed  Google Scholar 

  140. Smith P.R., Thornalley P.J.: Mechanism of the degradation of non-enzymatically glycated proteins under physiological conditions. Studies with the model fructosamine, N epsilon-(1-deoxy-D-fructos-1-yl)hippuryl-lysine. Eur. J. Biochem. 210(3), 729–739 (1992)

    Article  CAS  PubMed  Google Scholar 

  141. Nishikawa T., Edelstein D., Du X.L., Yamagishi S., Matsumura T., Kaneda Y., Yorek M.A., Beebe D., Oates P.J., Hammes H.P., Giardino I., Brownlee M.: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 404(6779), 787–790 (2000)

    Article  CAS  PubMed  Google Scholar 

  142. Araki E., Nishikawa T.: Oxidative stress: A cause and therapeutic target of diabetic complications. J Diabetes Investig. 1(3), 90–96 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Parzonko A., Czerwińska M.E., Kiss A.K., Naruszewicz M.: Oleuropein and oleacein may restore biological functions of endothelial progenitor cells impaired by angiotensin II via activation of Nrf2/heme oxygenase-1 pathway. Phytomedicine. 20(12), 1088–1094 (2013)

    Article  CAS  PubMed  Google Scholar 

  144. Koriyama Y., Chiba K., Yamazaki M., Suzuki H., Muramoto K., Kato S.: Long-acting genipin derivative protects retinal ganglion cells from oxidative stress models in vitro and in vivo through the Nrf2/antioxidant response element signaling pathway. J. Neurochem. 115(1), 79–91 (2010)

    Article  CAS  PubMed  Google Scholar 

  145. Okada K., Shoda J., Kano M., Suzuki S., Ohtake N., Yamamoto M., Takahashi H., Utsunomiya H., Oda K., Sato K., Watanabe A., Ishii T., Itoh K., Yamamoto M., Yokoi T., Yoshizato K., Sugiyama Y., Suzuki H.: Inchinkoto, a herbal medicine, and its ingredients dually exert Mrp2/MRP2-mediated choleresis and Nrf2-mediated antioxidative action in rat livers. Am. J. Physiol. Gastrointest. Liver Physiol. 292(5), G1450–G1463 (2007)

    Article  CAS  PubMed  Google Scholar 

  146. Gacche R.N., Dhole N.A.: Profile of aldose reductase inhibition, anti-cataract and free radical scavenging activity of selected medicinal plants: an attempt to standardize the botanicals for amelioration of diabetes complications. Food Chem. Toxicol. 49(8), 1806–1813 (2011)

    Article  CAS  PubMed  Google Scholar 

  147. Lee C.M., Jung H.A., Oh S.H., Park C.H., Tanaka T., Yokozawa T., Choi J.S.: Kinetic and molecular docking studies of loganin and 7-O-galloyl-D-sedoheptulose from Corni Fructus as therapeutic agents for diabetic complications through inhibition of aldose reductase. Arch. Pharm. Res. 38(6), 1090–1098 (2015)

    Article  CAS  PubMed  Google Scholar 

  148. Akileshwari C., Muthenna P., Nastasijević B., Joksić G., Petrash J.M., Reddy G.B.: : Inhibition of aldose reductase by Gentiana lutea extracts. Exp. Diabetes Res. 2012, article ID 147965 (2012)

    Article  Google Scholar 

  149. Kohda H., Tanaka S., Yamaoka Y., Yahara S., Nohara T., Tanimoto T., Tanaka A.: Studies on lens-aldose-reductase inhibitor in medicinal plants. II. Active constituents of Monochasma savatierii Franch. et Maxim. Chem. Pharm. Bull (Tokyo). 37(11), 3153–3154 (1989)

    Article  CAS  Google Scholar 

  150. Edwards J.L., Vincent A.M., Cheng H.T., Feldman E.L.: Diabetic neuropathy: mechanisms to management. Pharmacol. Ther. 120(1), 1–34 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Giacco F., Brownlee M.: Oxidative stress and diabetic complications. Circ. Res. 107(9), 1058–1070 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Levi B., Werman M.J.: Long-term fructose consumption accelerates glycation and several age-related variables in male rats. J. Nutr. 128(9), 1442–1449 (1998)

    CAS  PubMed  Google Scholar 

  153. Hori M., Yagi M., Nomoto K., Ichijo R., Shimode A., Kitano T., Yonei Y.: Experimental models for advanced glycation end product formation using albumin, collagen, elastin, keratin and proteoglycan. Anti-Aging Med. 9(5), 125–134 (2012)

    Google Scholar 

  154. Kawai T., Takei I., Tokui M., Funae O., Miyamoto K., Tabata M., Hirata T., Saruta T., Shimada A., Itoh H.: Effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy in patients with type 2 diabetes, in relation to suppression of N(ɛ)-carboxymethyl lysine. J. Diabetes Complicat. 24(6), 424–432 (2010)

    Article  PubMed  Google Scholar 

  155. Park C.H., Tanaka T., Kim H.Y., Park J.C., Yokozawa T.: Protective Effects of Corni Fructus against Advanced Glycation Endproducts and Radical Scavenging. Evid. Based Complement. Alternat. Med. 2012, article ID 418953 (2012)

    Google Scholar 

  156. Ghisalberti E.L.: Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine. 5(2), 147–163 (1998)

    Article  CAS  PubMed  Google Scholar 

  157. West, B.: Bioactivation of deacetylasperulosidic acid: changes in bioactivity. Proceedings of the 2nd Annual International Iridoid Research Symposium, Provo, Utah, 9–10 August (2011)

  158. Ueda S., Iwahashi Y., Tokuda H.: Production of anti-tumor-promoting iridoid glucosides in Genipa americana and its cell cultures. J. Nat. Prod. 54(6), 1677–1680 (1991)

    Article  CAS  PubMed  Google Scholar 

  159. Huh S.O., Kim J.H., Chang I.M.: Effects of iridoid compounds on RNA and protein biosynthesis in Sarcoma 180 cells. Saengyak Hakhoe Chi. 16(99), 99–104 (1985)

    CAS  Google Scholar 

  160. Chang I.M.: Antiviral activity of aucubin against hepatitis B virus replication. Phytother. Res. 11(3), 189–195 (1997)

    Article  CAS  Google Scholar 

  161. Yamazaki M., Chiba K., Mohri T.: Neuritogenic effect of natural iridoid compounds on PC12h cells and its possible relation to signaling protein kinases. Biol. Pharm. Bull. 19(6), 791–795 (1996)

    Article  CAS  PubMed  Google Scholar 

  162. Isiguro K., Yamaki M., Takagi S., Ikeda Y., Kawakami K., Ito K., Nose T.: Studies on iridoid-related compounds. IV. Antitumor activity of iridoid aglycones. Chem. Pharm. Bull. (Tokyo). 34(6), 2375–2379 (1986)

    Article  CAS  Google Scholar 

  163. Takino J., Nagamine K., Hori T., Sakasai-Sakai A., Takeuchi M.: Contribution of the toxic advanced glycation end-products-receptor axis in nonalcoholic steatohepatitis-related hepatocellular carcinoma. World J. Hepatol. 7(23), 2459–2469 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  164. Pertynska-Marczewska M., Diamanti-Kandarakis E., Zhang J., Merhi Z.: Advanced glycation end products: A link between metabolic and endothelial dysfunction in polycystic ovary syndrome? Metabolism. 64(11), 1564–1573 (2015)

    Article  CAS  PubMed  Google Scholar 

  165. Malik P., Chaudhry N., Mittal R., Mukherjee T.K.: Role of receptor for advanced glycation end products in the complication and progression of various types of cancers. Biochim. Biophys. Acta. 1850(9), 1898–1904 (2015)

    Article  CAS  PubMed  Google Scholar 

  166. Kouidrat Y., Amad A., Arai M., Miyashita M., Lalau J.D., Loas G., Itokawa M.: Advanced glycation end products and schizophrenia: A systematic review. J. Psychiatr. Res. 66-67, 112–117 (2015)

    Article  PubMed  Google Scholar 

  167. Angeloni C., Zambonin L., Hrelia S.: Role of methylglyoxal in Alzheimer's disease. Biomed. Res. Int. 2014, article ID 238485 (2014)

    Google Scholar 

  168. Prasad C., Imrhan V., Marotta F., Juma S., Vijayagopal P.: Lifestyle and Advanced Glycation End Products (AGEs) Burden: Its Relevance to Healthy Aging. Aging. Dis. 5(3), 212–217 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett J. West.

Ethics declarations

Conflict of Interest

The authors, with the exception of Sho-ichi Yamagishi, have been employed by Morinda, Inc., a manufacturer of food products containing iridoids. Sho-ichi Yamagishi has participated as a guest lecturer at educational conferences organized by Morinda, Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

West, B.J., Deng, S., Uwaya, A. et al. Iridoids are natural glycation inhibitors. Glycoconj J 33, 671–681 (2016). https://doi.org/10.1007/s10719-016-9695-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9695-x

Keywords

Navigation