Abstract
Transition Probability (fidelity) for pairs of density operators can be defined as a “functor” in the hierarchy of “all” quantum systems and also within any quantum system. The Introduction of “amplitudes” for density operators allows for a more intuitive treatment of these quantities, also pointing to a natural parallel transport. The latter is governed by a remarkable gauge theory with strong relations to the Riemann-Bures metric.
Similar content being viewed by others
References
Ando, T.: Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl. 26, 203–241 (1979)
Aberg, J., Kult, D., Sjöquist, D., Oi, K.L.: Operational approach to Uhlmann’s holonomy. Phys. Rev. A 75, 032106 (2007)
Alberti, P.M.: A note on the transition probability over C *-algebras. Lett. Math. Phys. 7, 25–32 (1983)
Alberti, P.M., Uhlmann, A.: Stochastic linear maps and transition probability. Lett. Math. Phys. 7, 107–112 (1983)
Alberti, P.M., Uhlmann, A.: On Bures-distance and *-algebraic transition probability between inner derived positive linear forms over W *-algebras. Acta Appl. Math. 60, 1–37 (2000)
Araki, H., Raggio, G.: Remark on transition probability. Lett. Math. Phys. 6, 237–240 (1982)
Barnum, H., Caves, C.A., Fuchs, C.A., Jozsa, R., Schumacher, B.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 83, 1054–1057 (1996)
Bengtsson, I., Życzkowski, K.: Geometry of Quantum States. Cambridge University Press, Cambridge (2006)
Bengtsson, I.: Geometrical statistics—classical and quantum. arXiv:quant-ph/0509017
Bhatia, R., Rosenthal, P.: How and why to solve the operator equation AX−XB=Y. Bull. Lond. Math. Soc. 29, 1–21 (1997)
Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994)
Bures, D.J.C.: An extension of Kakutani’s theorem on infinite product measures to the tensor product of semi-finite W *-algebras. Trans. Am. Math. Soc. 135, 199 (1969)
Chruśeiński, D., Jamiolkowski, A.: Geometric Phases in Classical and Quantum Mechanics. Birkhäuser, Boston (2004)
Corach, G., Maestripieri, A.L.: Geometry of positive operators and Uhlmann’s approach to the geometric phase. Rep. Math. Phys. 47, 287–299 (2001)
Crell, B., Uhlmann, A.: Geometry of state spaces. In: Buchleitner, A., Viviescas, C., Tiersch, M. (eds.) Entanglement and Decoherence. Lecture Notes in Physics, vol. 768, pp. 1–60. Springer, Berlin (2009)
Dabrowski, L., Grosse, H.: On quantum holonomy for mixed states. Lett. Math. Phys. 19, 205 (1990)
Dittmann, J.: On the Riemann metric in the space of density matrices. Rep. Math. Phys. 36, 309 (1995)
Ericsson, A.: Geodesic and the best measurement for distinguishing quantum states. J. Phys. A, Math. Gen. 38, L725–L730 (2005)
Fuchs, C.A.: Distinguishability and accessible information in quantum theory. Ph.D. thesis, Univ. of New Mexico (1996)
Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315–2323 (1994)
Kult, D.: Quantum holonomies. Thesis, Uppsala (2007)
Miszczak, T.A., Puchala, Z., Horodecki, P., Uhlmann, A., Zyczkowski, K.: Sub- and super-fidelity as bounds for quantum fidelity. Quantum Inf. Comput. 9, 0103–0130 (2009)
Mendonca, P.E.M.F., Napolitano, R.D.J., Marchiolli, M.A., Foster, C.J., Liang, Y.-C.: An alternative fidelity measure for quantum states. arXiv:0806.1150
Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Pusz, W., Woronowicz, L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8, 159–170 (1975)
Slater, P.: Bures geometry of the three-level quantum system. J. Geom. Phys. 39, 207–216 (2001)
Slater, P.: Mixed states holonomy. Lett. Math. Phys. 60, 123–133 (2002)
Rudolph, G., Tok, T.: A certain class of Einstein-Yang-Mills systems. Rep. Math. Phys. 39, 433–446 (1997)
Uhlmann, A.: The “transition probability” in the state space of a *-algebra. Rep. Math. Phys. 9, 273–279 (1976)
Uhlmann, A.: Parallel transport and quantum holonomy along density operators. Rep. Math. Phys. 24, 229–240 (1986)
Uhlmann, A.: The metric of Bures and the geometric phase. In: Gielerak, R., et al. (eds.) Quantum Groups and Related Topics. Proceedings of the First Max Born Symposium, pp. 267–274. Kluwer Academic, Dordrecht (1992)
Uhlmann, A.: Gauge field governing parallel transport along mixed states. Lett. Math. Phys. 21, 229–236 (1991)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Uhlmann, A. Transition Probability (Fidelity) and Its Relatives. Found Phys 41, 288–298 (2011). https://doi.org/10.1007/s10701-009-9381-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10701-009-9381-y