[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Transition Probability (Fidelity) and Its Relatives

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Transition Probability (fidelity) for pairs of density operators can be defined as a “functor” in the hierarchy of “all” quantum systems and also within any quantum system. The Introduction of “amplitudes” for density operators allows for a more intuitive treatment of these quantities, also pointing to a natural parallel transport. The latter is governed by a remarkable gauge theory with strong relations to the Riemann-Bures metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando, T.: Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl. 26, 203–241 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aberg, J., Kult, D., Sjöquist, D., Oi, K.L.: Operational approach to Uhlmann’s holonomy. Phys. Rev. A 75, 032106 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  3. Alberti, P.M.: A note on the transition probability over C *-algebras. Lett. Math. Phys. 7, 25–32 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Alberti, P.M., Uhlmann, A.: Stochastic linear maps and transition probability. Lett. Math. Phys. 7, 107–112 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Alberti, P.M., Uhlmann, A.: On Bures-distance and *-algebraic transition probability between inner derived positive linear forms over W *-algebras. Acta Appl. Math. 60, 1–37 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Araki, H., Raggio, G.: Remark on transition probability. Lett. Math. Phys. 6, 237–240 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Barnum, H., Caves, C.A., Fuchs, C.A., Jozsa, R., Schumacher, B.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 83, 1054–1057 (1996)

    ADS  Google Scholar 

  8. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  9. Bengtsson, I.: Geometrical statistics—classical and quantum. arXiv:quant-ph/0509017

  10. Bhatia, R., Rosenthal, P.: How and why to solve the operator equation AXXB=Y. Bull. Lond. Math. Soc. 29, 1–21 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Bures, D.J.C.: An extension of Kakutani’s theorem on infinite product measures to the tensor product of semi-finite W *-algebras. Trans. Am. Math. Soc. 135, 199 (1969)

    MATH  MathSciNet  Google Scholar 

  13. Chruśeiński, D., Jamiolkowski, A.: Geometric Phases in Classical and Quantum Mechanics. Birkhäuser, Boston (2004)

    Google Scholar 

  14. Corach, G., Maestripieri, A.L.: Geometry of positive operators and Uhlmann’s approach to the geometric phase. Rep. Math. Phys. 47, 287–299 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Crell, B., Uhlmann, A.: Geometry of state spaces. In: Buchleitner, A., Viviescas, C., Tiersch, M. (eds.) Entanglement and Decoherence. Lecture Notes in Physics, vol. 768, pp. 1–60. Springer, Berlin (2009)

    Chapter  Google Scholar 

  16. Dabrowski, L., Grosse, H.: On quantum holonomy for mixed states. Lett. Math. Phys. 19, 205 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Dittmann, J.: On the Riemann metric in the space of density matrices. Rep. Math. Phys. 36, 309 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Ericsson, A.: Geodesic and the best measurement for distinguishing quantum states. J. Phys. A, Math. Gen. 38, L725–L730 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Fuchs, C.A.: Distinguishability and accessible information in quantum theory. Ph.D. thesis, Univ. of New Mexico (1996)

  20. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315–2323 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Kult, D.: Quantum holonomies. Thesis, Uppsala (2007)

  22. Miszczak, T.A., Puchala, Z., Horodecki, P., Uhlmann, A., Zyczkowski, K.: Sub- and super-fidelity as bounds for quantum fidelity. Quantum Inf. Comput. 9, 0103–0130 (2009)

    MathSciNet  Google Scholar 

  23. Mendonca, P.E.M.F., Napolitano, R.D.J., Marchiolli, M.A., Foster, C.J., Liang, Y.-C.: An alternative fidelity measure for quantum states. arXiv:0806.1150

  24. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  25. Pusz, W., Woronowicz, L.: Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 8, 159–170 (1975)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Slater, P.: Bures geometry of the three-level quantum system. J. Geom. Phys. 39, 207–216 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Slater, P.: Mixed states holonomy. Lett. Math. Phys. 60, 123–133 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rudolph, G., Tok, T.: A certain class of Einstein-Yang-Mills systems. Rep. Math. Phys. 39, 433–446 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Uhlmann, A.: The “transition probability” in the state space of a *-algebra. Rep. Math. Phys. 9, 273–279 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Uhlmann, A.: Parallel transport and quantum holonomy along density operators. Rep. Math. Phys. 24, 229–240 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Uhlmann, A.: The metric of Bures and the geometric phase. In: Gielerak, R., et al. (eds.) Quantum Groups and Related Topics. Proceedings of the First Max Born Symposium, pp. 267–274. Kluwer Academic, Dordrecht (1992)

    Google Scholar 

  32. Uhlmann, A.: Gauge field governing parallel transport along mixed states. Lett. Math. Phys. 21, 229–236 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Uhlmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlmann, A. Transition Probability (Fidelity) and Its Relatives. Found Phys 41, 288–298 (2011). https://doi.org/10.1007/s10701-009-9381-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9381-y

Keywords

Navigation