[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Linear elastic fracture simulation directly from CAD: 2D NURBS-based implementation and role of tip enrichment

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

We propose a method for simulating linear elastic crack growth through an isogeometric boundary element method directly from a CAD model and without any mesh generation. To capture the stress singularity around the crack tip, two methods are compared: (1) a graded knot insertion near crack tip; (2) partition of unity enrichment. A well-established CAD algorithm is adopted to generate smooth crack surfaces as the crack grows. The M integral and \(J_k\) integral methods are used for the extraction of stress intensity factors (SIFs). The obtained SIFs and crack paths are compared with other numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S (2008) The role of continuity in residual-based variational multiscale modeling of turbulence. Comput Mech 41(3):371–378

    Article  Google Scholar 

  • Aour B, Rahmani O, Nait-Abdelaziz M (2007) A coupled FEM/BEM approach and its accuracy for solving crack problems in fracture mechanics. Int J Solids Struct 44(7–8):2523–2539

    Article  Google Scholar 

  • Arnold D, Saranen J (1984) On the asymptotic convergence of spline collocation methods for partial differential equations. SIAM J Numer Anal 21(3):459–472

    Article  Google Scholar 

  • Auricchio F, da Veiga LB, Lovadina C, Reali A (2010a) The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations. Comput Methods Appl Mech Eng 199(5–8):314–323

    Article  Google Scholar 

  • Auricchio F, Veiga LBD, Hughes TJR, Reali A, Sangalli G (2010b) Isogeometric collocation methods. Math Models Methods Appl Sci 20(11):2075–2107

    Article  Google Scholar 

  • Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38(4–5):310–322

    Article  Google Scholar 

  • Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(5–8):229–263

    Article  Google Scholar 

  • Becker A (1992) The boundary element methods in engineering. McGraw-Hill Book Company, New York

    Google Scholar 

  • Beer G, Marussig B, Zechner J (2015) A simple approach to the numerical simulation with trimmed CAD surfaces. Comput Methods Appl Mech Eng 285:776–790

    Article  Google Scholar 

  • Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199(5–8):276–289

    Article  Google Scholar 

  • Blandford GE, Ingraffea AR, Liggett JA (1981) Two-dimensional stress intensity factor computations using the boundary element method. Int J Numer Methods Eng 17(3):387–404

    Article  Google Scholar 

  • Bonnet M, Maier G, Polizzoto C (1998) Symmetric Galerkin boundary element method. Appl Mech Rev 51:669–704

    Article  Google Scholar 

  • Bordas S, Nguyen PV, Dunant C, Guidoum A, Nguyen-Dang H (2007) An extended finite element library. Int J Numer Methods Eng 71(6):703–732

    Article  Google Scholar 

  • Bordas SPA, Rabczuk T, Zi G (2008) Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Eng Fract Mech 75(5):943–960

    Article  Google Scholar 

  • Bordas SPA, Duflot M (2007) Derivative recovery and a posteriori error estimate for extended finite elements. Comput Methods Appl Mech Eng 196(35–36):3381–3399

    Article  Google Scholar 

  • Bordas S, Moran B (2006) Enriched finite elements and level sets for damage tolerance assessment of complex structures. Eng Fract Mech 73(9):1176–1201

    Article  Google Scholar 

  • Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95

    Article  Google Scholar 

  • Bouchard PO, Bay F, Chastel Y, Tovena I (2000) Crack propagation modelling using an advanced remeshing technique. Comput Methods Appl Mech Eng 189(3):723–742

    Article  Google Scholar 

  • Chang JH, Wu DJ (2007) Stress intensity factor computation along a non-planar curved crack in three dimensions. Int J Solids Struct 44(2):371–386

    Article  Google Scholar 

  • Cisilino AP, Aliabadi MH (2004) Dual boundary element assessment of three-dimensional fatigue crack growth. Eng Anal Boundary Elem 28(9):1157–1173

    Article  Google Scholar 

  • Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int J Fract 16(2):155–169

    Article  Google Scholar 

  • Crouch SL (1976) Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution. Int J Numer Methods Eng 10(2):301–343

    Article  Google Scholar 

  • Davis BR, Wawrzynek PA, Carter BJ, Ingraffea AR (2016) 3-D simulation of arbitrary crack growth using an energy-based formulation—part II: non-planar growth. Eng Fract Mech 154:111–127

    Article  Google Scholar 

  • De Luycker E, Benson DJ, Belytschko T, Bazilevs Y, Hsu MC (2011) X-FEM in isogeometric analysis for linear fracture mechanics. Int J Numer Methods Eng 87(6):541–565

    Article  Google Scholar 

  • Deng J, Chen F, Li X, Hu C, Tong W, Yang Z, Feng Y (2008) Polynomial splines over hierarchical T-meshes. Graph Models 70(4):76–86

    Article  Google Scholar 

  • Dokken T, Lyche T, Pettersen KF (2013) Polynomial splines over locally refined box-partitions. Comput Aided Geom Des 30(3):331–356

    Article  Google Scholar 

  • Dominguez J, Ariza MP (2000) A direct traction BIE approach for three-dimensional crack problems. Eng Anal Bound Elem 24(10):727–738

    Article  Google Scholar 

  • Dong L, Atluri SN (2013) Fracture & fatigue analyses: SGBEM-FEM or XFEM? part 2: 3D solids. Comput Model Eng Sci 90(5):3379–3413

    Google Scholar 

  • Duflot M, Bordas SPA (2008) A posteriori error estimation for extended finite elements by an extended global recovery. Int J Numer Methods Eng 76(8):1123–1138

    Article  Google Scholar 

  • Eischen JW (1987) An improved method for computing the J2 integral. Eng Fract Mech 26(5):691–700

    Article  Google Scholar 

  • Erdogan F, Sih G (1963) On the crackextension in plates under plane loading and transverse shear. J Basic Eng 85:519–527

    Article  Google Scholar 

  • Feischl M, Gantner G, Praetorius D (2015) Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations. Comput Methods Appl Mech Eng 290:362–386

    Article  Google Scholar 

  • Frangi A (2002) Fracture propagation in 3D by the symmetric Galerkin boundary element method. Int J Fract 116(4):313–330

    Article  Google Scholar 

  • Ghorashi S, Valizadeh N, Mohammadi S (2012) Extended isogeometric analysis for simulation of stationary and propagating cracks. Int J Numer Methods Eng 89(9):1069–1101

    Article  Google Scholar 

  • González-Estrada OA, Ródenas JJ, Nadal E, Bordas SPA, Kerfriden P (2011) Equilibrated patch recovery for accurate evaluation of upper error bounds in quantities of interest. In: Proceedings of V adaptive modeling and simulation (ADMOS)

  • González-Estrada OA, Nadal E, Ródenas JJ, Kerfriden P, Bordas SPA, Fuenmayor FJ (2014) Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Comput Mech 53(5):957–976

    Article  Google Scholar 

  • Gosz M, Moran B (2002) An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions. Eng Fract Mech 69(3):299–319

    Article  Google Scholar 

  • Goury O (2015) Computational time savings in multiscale fracture mechanics using model order reduction. PhD thesis, Cardiff University

  • Gravouil A, Moës N, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets-part II: level set update. Int J Numer Methods Eng 53(11):2569–2586

    Article  Google Scholar 

  • Gu J, Zhang J, Li G (2012) Isogeometric analysis in BIE for 3-D potential problem. Eng Anal Bound Elem 36(5):858–865

    Article  Google Scholar 

  • Guiggiani M, Krishnasamy G, Rudolphi TJ, Rizzo FJ (1992) A general algorithm for the numerical solution of hypersingular boundary integral equations. J Appl Mech 59(3):604–614

    Article  Google Scholar 

  • Heltai L, Arroyo M, DeSimone A (2012) Nonsingular isogeometric boundary element method for Stokes flows in 3D. Comput Methods Appl Mech Eng. 268:514–539. doi:10.1016/j.cma.2013.09.017

  • Henshell RD, Shaw KG (1975) Crack tip finite elements are unnecessary. Int J Numer Methods Eng 9(3):495–507

    Article  Google Scholar 

  • Hong H, Chen J (1988) Derivations of integral equations of elasticity. J Eng Mech 114(6):1028–1044

    Article  Google Scholar 

  • Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  Google Scholar 

  • Ingraffea AR, Grigoriu M (1990) Probabilistic fracture mechanics: a validation of predictive capability. Department of Structure Engineering, Cornell University, Report, pp 90–98

  • Juhl P (1998) A note on the convergence of the direct collocation boundary element method. J Sound Vib 212(4):703–719

    Article  Google Scholar 

  • Kaczmarczyk U, Nezhad MM, Pearce C (2014) Three-dimensional brittle fracture: configurational-force-driven crack propagation. Int J Numer Methods Eng 97(7):531–550

    Article  Google Scholar 

  • Karihaloo BL, Xiao QZ (2001) Accurate determination of the coefficients of elastic crack tip asymptotic field by a hybrid crack element with p-adaptivity. Eng Fract Mech 68(15):1609–1630

    Article  Google Scholar 

  • LaGreca R, Daniel M, Bac A (2005) Local deformation of NURBS curves. Math Methods Curves Surf Tromso 2004:243–252

    Google Scholar 

  • Lan M, Waisman H, Harari I (2013) A direct analytical method to extract mixed-mode components of strain energy release rates from Irwin’s integral using extended finite element method. Int J Numer Methods Eng 95(12):1033–1052

    Article  Google Scholar 

  • Li S, Mear ME, Xiao L (1998) Symmetric weak-form integral equation method for three-dimensional fracture analysis. Comput Methods Appl Mech Eng 151(3–4):435–459

    Article  Google Scholar 

  • Liew KM, Cheng Y, Kitipornchai S (2007) Analyzing the 2D fracture problems via the enriched boundary element-free method. Int J Solids Struct 44(11–12):4220–4233

    Article  Google Scholar 

  • Li K, Qian X (2011) Isogeometric analysis and shape optimization via boundary integral. Comput Aided Des 43(11):1427–1437

    Article  Google Scholar 

  • Liu Y, Rudolphi TJ (1991) Some identities for fundamental solutions and their applications to weakly-singular boundary element formulations. Eng Anal Bound Elem 8(6):301–311

    Article  Google Scholar 

  • Lutz E, Ingraffea AR, Gray LJ (1992) Use of ‘simple solutions’ for boundary integral methods in elasticity and fracture analysis. Int J Numer Methods Eng 35(9):1737–1751

    Article  Google Scholar 

  • Martinez J, Dominguez J (1984) On the use of quarter-point boundary elements for stress intensity factor computations. Int J Numer Methods Eng 20(10):1941–1950

    Article  Google Scholar 

  • Martin PA, Rizzo FJ (1996) Hypersingular integrals: how smooth must the density be? Int J Numer Methods Eng 39(4):687–704

    Article  Google Scholar 

  • Marussig B, Zechner J, Beer G, Fries TP (2015) Fast isogeometric boundary element method based on independent field approximation. Comput Methods Appl Mech Eng 284:458–488

    Article  Google Scholar 

  • Melenk JM, Babuška I (1996) The partition of unity finite element method: Basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314

    Article  Google Scholar 

  • Mi Y, Aliabadi MH (1992) Dual boundary element method for three-dimensional fracture mechanics analysis. Eng Anal Bound Elem 10(2):161–171

    Article  Google Scholar 

  • Mi Y, Aliabadi MH (1994) Discontinuous crack-tip elements: application to 3D boundary element method. Int J Fract 67(3):R67–R71

    Article  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  Google Scholar 

  • Moës N, Gravouil A, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets-part I: mechanical model. Int J Numer Methods Eng 53(11):2549–2568

    Article  Google Scholar 

  • Mukherjee YX, Shah K, Mukherjee S (1999) Thermoelastic fracture mechanics with regularized hypersingular boundary integral equations. Eng Anal Bound Elem 23(1):89–96

    Article  Google Scholar 

  • Muthu N, Falzon BG, Maiti SK, Khoddam S (2014) Modified crack closure integral technique for extraction of {SIFs} in meshfree methods. Finite Elem Anal Des 78:25–39

    Article  Google Scholar 

  • Natarajan S, Song C (2013) Representation of singular fields without asymptotic enrichment in the extended finite element method. Int J Numer Methods Eng 96(13):813–841

    Article  Google Scholar 

  • Nguyen VP, Kerfriden P, Bordas SPA (2014) Two- and three-dimensional isogeometric cohesive elements for composite delamination analysis. Compos Part B Eng 60:193–212

    Article  Google Scholar 

  • Nikishkov GP, Park JH, Atluri SN (2001) SGBEM-FEM alternating method for analyzing 3D non-planar cracks and their growth in structural components. Comput Model Eng Sci 2(3):401–422

    Google Scholar 

  • Paluszny A, Zimmerman RW (2013) Numerical fracture growth modeling using smooth surface geometric deformation. Eng Fract Mech 108:19–36

    Article  Google Scholar 

  • Partheymüller P, Haas M, Kuhn G (2000) Comparison of the basic and the discontinuity formulation of the 3D-dual boundary element method. Eng Anal Bound Elem 24(10):777–788

    Article  Google Scholar 

  • Peake MJ, Trevelyan J, Coates G (2013) Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems. Comput Methods Appl Mech Eng 259:93–102

    Article  Google Scholar 

  • Piegl L, Tiller W (1995) The NURBS book. Springer, Berlin

    Book  Google Scholar 

  • Politis C, Ginnis AI, Kaklis PD, Belibassakis K, Feurer C (2009) An isogeometric BEM for exterior potential-flow problems in the plane. In: 2009 SIAM/ACM joint conference on geometric and physical modeling, SPM ’09, ACM, New York, NY, USA, pp 349–354

  • Portela A (2011) Dual boundary-element method: simple error estimator and adaptivity. Int J Numer Methods Eng 86(12):1457–1480

    Article  Google Scholar 

  • Portela A, Aliabadi MH, Rooke DP (1992a) The dual boundary element method: effective implementation for crack problems. Int J Numer Methods Eng 33(6):1269–1287

    Article  Google Scholar 

  • Portela A, Aliabadi MH, Rooke DP (1992b) Dual boundary element analysis of cracked plates: singularity subtraction technique. Int J Fract 55(1):17–28

    Article  Google Scholar 

  • Rabczuk T, Bordas S, Zi G (2010) On three-dimensional modelling of crack growth using partition of unity methods. Comput Struct 88(23–24):1391–1411

    Article  Google Scholar 

  • Rahimabadi AA (2014) Error controlled adaptive multiscale method for fracture in polycrystalline materials. PhD thesis, Cardiff University

  • Rigby RH, Aliabadi MH (1998) Decomposition of the mixed-mode J-integral-revisited. Int J Solids Struct 35(17):2073–2099

    Article  Google Scholar 

  • Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting. Int J Numer Methods Eng 76(4):545–571

    Article  Google Scholar 

  • Rudolphi TJ (1991) The use of simple solutions in the regularization of hypersingular boundary integral equations. Math Comput Model. 15(3–5):269–278

    Article  Google Scholar 

  • Scott MA, Li X, Sederberg TW, Hughes TJR (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213–216:206–222

    Article  Google Scholar 

  • Scott MA, Simpson RN, Evans JA, Lipton S, Bordas SPA, Hughes TJR, Sederberg TW (2013) Isogeometric boundary element analysis using unstructured T-splines. Comput Methods Appl Mech Eng 254:197–221

    Article  Google Scholar 

  • Shivakumar KN, Raju IS (1992) An equivalent domain integral method for three-dimensional mixed-mode fracture problems. Eng Fract Mech 42(6):935–959

    Article  Google Scholar 

  • Simpson R, Trevelyan J (2011) A partition of unity enriched dual boundary element method for accurate computations in fracture mechanics. Comput Methods Appl Mech Eng 200(1–4):1–10

    Article  Google Scholar 

  • Simpson RN, Bordas SPA, Trevelyan J, Rabczuk T (2012) A two-dimensional isogeometric boundary element method for elastostatic analysis. Comput Methods Appl Mech Eng 209–212:87–100

    Article  Google Scholar 

  • Simpson RN, Scott MA, Taus M, Thomas DC, Lian H (2013) Acoustic isogeometric boundary element analysis. Comput Methods Appl Mech Eng 269:265–290. doi:10.1016/j.cma.2013.10.026

  • Smith DJ, Ayatollahi MR, Pavier MJ (2001) The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue Fract Eng Mater Struct 24(2):137–150

    Article  Google Scholar 

  • Snyder MD, Cruse TA (1975) Boundary-integral equation analysis of cracked anisotropic plates. Int J Fract 11(2):315–328

    Article  Google Scholar 

  • Sukumar N, Chopp DL, Béchet E, Moës N (2008) Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method. Int J Numer Methods Eng 76(5):727–748

    Article  Google Scholar 

  • Sutradhar A, Paulino GH (2004) Symmetric Galerkin boundary element computation of T-stress and stress intensity factors for mixed-mode cracks by the interaction integral method. Eng Anal Bound Elem 28(11):1335–1350

    Article  Google Scholar 

  • Sutula D, Bordas SPA (2013) Global energy minimization for all crack increment directions in the framework of XFEM. Internal report, University of Luxembourg

  • Tanaka M, Sladek V, Sladeck J (1994) Regularization techniques applied to boundary element methods. Appl Mech Rev 47(10):457–499

    Article  Google Scholar 

  • Taus M, Rodin GJ, Hughes TJR (2015) Isogeometric analysis of boundary integral equations. ICES report 15–12

  • Telles JCF (1987) A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals. Int J Numer Methods Eng 24(5):959–973

    Article  Google Scholar 

  • Ventura G, Xu JX, Belytschko T (2002) A vector level set method and new discontinuity approximations for crack growth by EFG. Int J Numer Methods Eng 54(6):923–944

    Article  Google Scholar 

  • Verhoosel CV, Scott MA, de Borst R, Hughes TJR (2011) An isogeometric approach to cohesive zone modeling. Int J Numer Methods Eng 87(1–5):336–360

    Article  Google Scholar 

  • Wang Y, Benson DJ, Nagy AP (2015) A multi-patch nonsingular isogeometric boundary element method using trimmed elements. Comput Mech 56(1):173–191

    Article  Google Scholar 

  • Westergaard HM (1939) Bearing pressures and cracks. J Appl Mech 6:A49–A53

    Google Scholar 

  • Wyart E, Duflot M, Coulon D, Martiny P, Pardoen T, Remacle J-F, Lani F (2008) Substructuring FE-XFE approaches applied to three-dimensional crack propagation. J Comput Appl Math 215(2):626–638

    Article  Google Scholar 

  • Yau JF, Wang SS, Corten HT (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J Appl Mech 47:333–341

    Article  Google Scholar 

  • Zamani NG, Sun W (1993) A direct method for calculating the stress intensity factor in BEM. Eng Anal Bound Elem 11(4):285–292

    Article  Google Scholar 

Download references

Acknowledgments

The first and last authors would like to acknowledge the financial support of the Framework Programme 7 Initial Training Network Funding under grant number 289361 ‘Integrating Numerical Simulation and Geometric Design Technology’. S. P. A. Bordas also thanks partial funding for his time provided by the UK Engineering and Physical Science Research Council (EPSRC) under grant EP/G069352/1 Advanced discretization strategies for ‘atomistic’ nano CMOS simulation; the EPSRC under grant EP/G042705/1 ‘Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method’ and the European Research Council Starting Independent Research Grant (ERC Stg grant agreement No. 279578) entitled ‘Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery’. E. Atroshchenko was partially supported by Fondecyt grant number 11130259 entitled ‘Boundary element modeling of crack propagation in micropolar materials’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Atroshchenko.

Appendices

Appendix 1

The fundamental solutions for traction BIE are:

$$\begin{aligned} K_{ij}= & {} \frac{1}{4\pi (1-\nu )r}[(1-2\nu )(\delta _{ij}r_{,k}+\delta _{jk}r_{,i} -\delta _{ik}r_{,j})\nonumber \\&+\,2r_{,i}r_{,j}r_{,k}]n_k(\mathbf {s}) \end{aligned}$$
(49)
$$\begin{aligned} S_{ij}= & {} \frac{\mu }{2\pi (1-\nu )r^2}\Big \{2\frac{\partial r}{\partial n}[(1-2\nu )\delta _{ik}r_{,j}\nonumber \\&+\,\nu (\delta _{ij}r_{,k}+\delta _{jk}r_{,i})-4r_{,i}r_{,j}r_{,k}] \nonumber \\&+\,2\nu (n_ir_{,j}r_{,k}+n_kr_{,i}r_{,j})-(1-4\nu )\delta _{ik}n_j \nonumber \\&+\,(1-2\nu )(2n_jr_{,i}r_{,k}+\delta _{ij}n_k+\delta _{jk}n_i)\Big \}n_k(\mathbf {s})\nonumber \\ \end{aligned}$$
(50)

Now we present the SST formula for the hyper-singular integral as follows. Expanding the components of distance between field and source points as Taylor series in parent space gives:

$$\begin{aligned} x_i-s_i= & {} \frac{\text {d}x_i}{\text {d}\hat{\xi }} \Big |_{\hat{\xi }=\hat{\xi _s}}(\hat{\xi }-\hat{\xi _s})+\frac{\text {d}^2x_i}{\text {d}{\hat{\xi }}^2} \Big |_{\hat{\xi }=\hat{\xi _s}}\frac{(\hat{\xi }-\hat{\xi _s})^2}{2}+\cdot \cdot \cdot \nonumber \\:= & {} A_i(\hat{\xi }-\hat{\xi _s})+B_i(\hat{\xi }-\hat{\xi _s})^2+\cdot \cdot \cdot \nonumber \\= & {} A_i\delta +B_i\delta ^2+O(\delta ^3) \end{aligned}$$
(51)

and

$$\begin{aligned} A:= & {} \left( \sum ^2_{k=1}A^2_k\right) ^{\frac{1}{2}} \nonumber \\ C:= & {} \sum ^2_{k=1}A_kB_k \end{aligned}$$
(52)

The first and second derivatives are:

$$\begin{aligned} \begin{aligned} \frac{\text {d}x_i}{\text {d}\xi }&=\frac{\text {d}N_a}{\text {d}\xi }x_i^a \\ \frac{\text {d}^2x_i}{\text {d}\xi ^2}&=\frac{\text {d}^2N_a}{\text {d}\xi ^2}x_i^a \\ \frac{\text {d}x_i}{\text {d}\hat{\xi }}&=\frac{\text {d}x_i}{\text {d}\xi }\frac{\text {d}\xi }{\text {d}\hat{\xi }}\\ \frac{\text {d}^2x_i}{\text {d}\hat{\xi }^2}&=\frac{\text {d}^2x_i}{\text {d}\xi ^2}\Big (\frac{\text {d}\xi }{\text {d}\hat{\xi }}\Big )^2 \end{aligned} \end{aligned}$$
(53)

The derivative \(r_{,i}\) can be expressed as

$$\begin{aligned} \begin{aligned} r_{,i}&=\frac{x_i-s_i}{r}=\frac{A_i}{A}+\left( {B_i}{A}-A_i\frac{A_kB_k}{A^3}\right) \delta +O(\delta ^2)\\&:=d_{i0}+d_{i1}\delta +O(\delta ^2) \end{aligned} \end{aligned}$$
(54)

The term \(1/r^2\) can be expressed as

$$\begin{aligned} \begin{aligned} \frac{1}{r^2}&=\frac{1}{A^2\delta ^2}-\frac{2C}{A^4\delta }+O(1)\\&:=\frac{S_{-2}}{\delta ^2}+\frac{S_{-1}}{\delta }+O(1) \end{aligned} \end{aligned}$$
(55)

The component of Jacobian from parametric space to physical space can be expressed as:

$$\begin{aligned} \begin{aligned} J_1(\xi )&=J_{10}(\xi _s)+J_{11}(\xi _s)(\xi -\xi _s)+O((\xi -\xi _s)^2) \\&=J_{10}(\xi _s)+\frac{\text {d}\xi }{\text {d}\hat{\xi }}\Big |_{\xi =\xi _s}J_{11}(\xi _s)\delta +O(\delta ^2) \\ J_2(\xi )&=J_{20}(\xi _s)+J_{21}(\xi _s)(\xi -\xi _s)+O((\xi -\xi _s)^2) \\&=J_{10}(\xi _s)+\frac{\text {d}\xi }{\text {d}\hat{\xi }}\Big |_{\xi =\xi _s}J_{21}(\xi _s)\delta +O(\delta ^2) \\ \text {i.e.}, \\ J_k(\xi )&:=J_{k0}(\xi _s)+\frac{\text {d}\xi }{\text {d}\hat{\xi }}\Big |_{\xi =\xi _s} J_{k1}(\xi _s)\delta +O(\delta ^2) \\ \end{aligned} \end{aligned}$$
(56)

and we note that

$$\begin{aligned} \begin{aligned} J(\xi )&=\sqrt{J_1^2(\xi )+J_2^2(\xi )}=\sqrt{\left( \frac{\text {d}y}{\text {d}\xi }\right) ^2+ \left( -\frac{\text {d} x}{\text {d}\xi }\right) ^2} \\ \mathbf {n}(\xi )&=\left[ \frac{\text {d}y}{\text {d}\xi },-\frac{\text {d}x}{\text {d}\xi }\right] \\ \text {i.e.}, \\ n_k(\xi )&=J_k(\xi )/J(\xi ) \end{aligned} \end{aligned}$$
(57)

And the NURBS basis function is also expanded as:

$$\begin{aligned} \begin{aligned} N_{a}(\hat{\xi })&=N_a(\hat{\xi }_s)+\frac{\text {d}N_a}{\text {d}\xi }\Big |_{\xi =\xi _s}(\xi -\xi _s)+\cdot \cdot \cdot \\&=N_a(\hat{\xi }_s)+\frac{\text {d}N_a}{\text {d}\xi }\Big |_{\xi =\xi _s}\frac{\text {d}\xi }{\text {d}\hat{\xi }}\Big |_{\hat{\xi }=\hat{\xi }_s}\delta +\cdot \cdot \cdot \\&:=N_{a0}(\hat{\xi }_s)+N_{a1}(\hat{\xi }_s)\frac{\text {d}\xi }{\text {d}\hat{\xi }}\Big |_{\hat{\xi }=\hat{\xi }_s}\delta +O(\delta ^2) \end{aligned} \end{aligned}$$
(58)

The detail form of hyper-singular kernel \(S_{ij}\) is (plane strain)

$$\begin{aligned} S_{ij}(\mathbf {s},\mathbf {x})= & {} \frac{\mu }{2\pi (1-\nu )r^2} \Big \{2\frac{\partial r}{\partial n}\left[ (1-\nu )\delta _{ik}r_{,j}\right. \nonumber \\&\left. +\,\nu (\delta _{ij}r_{,k}+\delta _{jk}r_{,i} -4r_{,i}r_{,j}r_{,k})\right] \nonumber \\&+\,2\nu (n_ir_{,j}r_{,k}+n_kr_{,i}r_{,j})- (1-4\nu )\delta _{ik}n_j\nonumber \\&+\,(1-2\nu )(2n_jr_{,i}r_{,k}+\delta _{ij}n_k+\delta _{jk}n_i) \Big \}n_k(\hat{\xi }_s)\nonumber \\:= & {} \frac{1}{r^2}h(\hat{\xi }) \end{aligned}$$
(59)

Noting that \(n_k(\xi )=J_k(\xi )/J(\xi )\), Use the above expansions to rewrite \(h(\xi )\) as:

$$\begin{aligned} h(\hat{\xi })= & {} \frac{h_0(\hat{\xi _s})}{J(\xi )}+\frac{h_1(\hat{\xi _s})}{J(\xi )}\delta +O(\delta ^2) \end{aligned}$$
(60)
$$\begin{aligned} h_0(\hat{\xi _s})= & {} \Big (2\nu (J_{i0}d_{j0}d_{k0}+J_{k0}d_{i0}d_{j0})\nonumber \\&+\,(1-2\nu )(2J_{j0}d_{i0}d_{k0}+\delta _{ij}J_{k0}+\delta _{jk}J_{i0})\nonumber \\&+\,(1-4\nu )\delta _{ik}J_{j0}\Big )\frac{\mu }{2\pi (1-\nu )}n_k(\hat{\xi }_s)\end{aligned}$$
(61)
$$\begin{aligned} h_1(\hat{\xi _s})= & {} \Big [2(d_{l1}J_{l0}+d_{l0}J_{l1})\Big ((1-2\nu ) \delta _{ik}d_{j0}\nonumber \\&+\,\nu (\delta _{ij}d_{k0}+\delta _{jk}d_{i0})-4d_{i0}d_{j0}d_{k0}\Big ) \nonumber \\&+\,2\nu \Big (J_{i0}(d_{j1}d_{k0}+d_{j0}d_{k1})+J_{i1}d_{j0}d_{k0}\nonumber \\&+\,J_{k0}(d_{i1}d_{j0}+d_{i0}d_{j1})+J_{k1}d_{i0}d_{j0}\Big ) \nonumber \\&+\,(1-2\nu )\Big (2(J_{j1}d_{i0}d_{k0}+J_{j0}(d_{i1}d_{k0}+d_{i0}d_{k1}))\nonumber \\&+\,\delta _{ij}J_{k1}+\delta _{jk}J_{i1}\Big ) \nonumber \\&-\,(1-4\nu )\delta _{ik}J_{j1}\Big ]\frac{\mu }{2\pi (1-\nu )}n_k(\hat{\xi }_s) \end{aligned}$$
(62)

Thus,

$$\begin{aligned}&h(\hat{\xi })N_a(\hat{\xi })J(\hat{\xi })=\Big (h_0(\hat{\xi }_s)+h_1(\hat{\xi }_s)\delta +O(\delta ^2)\Big )\nonumber \\&\quad \Big (N_{a0}(\hat{\xi }_s)+\frac{\text {d}\xi }{\text {d}\hat{\xi }}\Big |_{\hat{\xi }=\hat{\xi }_s}N_{a1}(\hat{\xi }_s)\delta +O(\delta ^2)\Big )\nonumber \\&\quad =h_0N_{a0}+\Big (h_1N_{a0}+h_0N_{a1}\frac{\text {d}\xi }{\text {d}\hat{\xi }}\Big |_{\hat{\xi }=\hat{\xi }_s}\Big )\delta +O(\delta ^2)\nonumber \\ \end{aligned}$$
(63)
$$\begin{aligned}&F(\hat{\xi _s},\hat{\xi })=\frac{1}{r^2(\hat{\xi }_s,\hat{\xi })}h(\hat{\xi })N_a(\hat{\xi })J(\hat{\xi }) \nonumber \\&\quad =\Big (\frac{S_{-2}}{\delta ^2}+\frac{S_{-1}}{\delta }+O(1)\Big )\nonumber \\&\qquad \Big (h_0N_{a0}+\Big (h_1N_{a0}+h_0N_{a1}\frac{\text {d}\xi }{\text {d}\hat{\xi }}\Big |_{\hat{\xi }=\hat{\xi }_s}\Big )\delta +O(\delta ^2)\Big )\nonumber \\&\quad =\frac{S_{-2}h_0N_{a0}}{\delta ^2}\nonumber \\&\qquad +\frac{S_{-1}h_0N_{a0}+S_{-2}\left( h_1N_{a0}+h_0N_{a1}\frac{\text {d}\xi }{\text {d}\hat{\xi }}\Big |_{\hat{\xi }=\hat{\xi }_s}\right) }{\delta }+O(1) \nonumber \\&\quad :=\frac{F_{-2}}{\delta ^2}+\frac{F_{-1}}{\delta }+O(1) \end{aligned}$$
(64)

Appendix 2

Once the \(J_1\) and \(J_2\) are evaluated properly, \(K_I\) and \(K_{II}\) can be found easily. Since

$$\begin{aligned} J_1= & {} \frac{K_I^2+K_{II}^2}{E'} \end{aligned}$$
(65a)
$$\begin{aligned} J_2= & {} -\frac{2K_IK_{II}}{E'} \end{aligned}$$
(65b)

where \(E'=E/(1-\nu ^2)\) for plane strain condition. And \(K_I\) and \(K_{II}\) can be solved as Eischen (1987):

$$\begin{aligned} K_I= & {} \pm \Big \{\frac{E'J_1}{2}\Big [1\pm \Big (1-\Big (\frac{J_2}{J_1}\Big )^2\Big )^{1/2}\Big ]\Big \}^{1/2} \end{aligned}$$
(66a)
$$\begin{aligned} K_{II}= & {} \pm \Big \{\frac{E'J_1}{2}\Big [1\mp \Big (1-\Big (\frac{J_2}{J_1}\Big )^2\Big )^{1/2}\Big ]\Big \}^{1/2} \end{aligned}$$
(66b)

The signs of \(K_I\) and \(K_{II}\) correspond to the signs of crack opening displacement \(\llbracket u_1\rrbracket \) and \(\llbracket u_2 \rrbracket \), respectively. If \(\llbracket u_1 \rrbracket >0\), \(K_I>0\). The term in brace can be determined as :

$$\begin{aligned}&\text {if}|\llbracket u_1\rrbracket |\ge |\llbracket u_2\rrbracket |, \text {take} + \end{aligned}$$
(67a)
$$\begin{aligned}&\text {if}|\llbracket u_1\rrbracket |< |\llbracket u_2\rrbracket |, \text {take} - \end{aligned}$$
(67b)

Combined with Eq. 65a, the following relationship can be obtained for the M integral,

$$\begin{aligned} M^{(1,2)}=\frac{2}{E'}\left( K_I^{(1)}K_I^{(2)}+K_{II}^{(1)}K_{II}^{(2)}\right) \end{aligned}$$
(68)

Let state 2 be the pure mode I asymptotic fields with \(K_I^{(2)}=1\), \(K_{II}^{(2)}=0\) and \(K_I\) in real state 1 can be found as

$$\begin{aligned} K_{I}^{(1)}=\frac{2}{E'}M^{(1, \text { mode }I)} \end{aligned}$$
(69)

The \(K_{II}\) can be given in a similar fashion.

The auxiliary stress field \(\sigma ^{(2)}_{ij}\) and displacement field \(u^{(2)}_{j}\) are given as:

$$\begin{aligned} \sigma _{xx}(r,\theta )= & {} \frac{K_I^{(2)}}{\sqrt{2\pi r}}\text {cos}\frac{\theta }{2}\Big (1-\text {sin}\frac{\theta }{2}\text {sin}\frac{3\theta }{2}\Big )\nonumber \\&-\frac{K_{II}^{(2)}}{\sqrt{2\pi r}}\text {sin}\frac{\theta }{2}\Big (2+\text {cos}\frac{\theta }{2}\text {cos}\frac{3\theta }{2}\Big ) \nonumber \\ \sigma _{yy}(r,\theta )= & {} \, \frac{K_{I}^{(2)}}{\sqrt{2\pi r}}\text {cos}\frac{\theta }{2}\Big (1+\text {sin}\frac{\theta }{2}\text {sin}\frac{3\theta }{2}\Big )\nonumber \\&+\frac{K_{II}^{(2)}}{\sqrt{2\pi r}}\text {sin}\frac{\theta }{2}\text {cos}\frac{\theta }{2}\text {cos}\frac{3\theta }{2}\nonumber \\ \tau _{xy}(r,\theta )= & {} \, \frac{K_{I}^{(2)}}{\sqrt{2\pi r}}\text {sin}\frac{\theta }{2}\text {cos}\frac{\theta }{2}\text {cos}\frac{3\theta }{2}\nonumber \\&+\frac{K_{II}^{(2)}}{\sqrt{2\pi r}}\text {cos}\frac{\theta }{2}\Big (1-\text {sin}\frac{\theta }{2}\text {sin}\frac{3\theta }{2}\Big )\nonumber \\ u_x(r,\theta )= & {} \,\frac{K_I}{2\mu }\sqrt{\frac{r}{2\pi }} \text {cos}\frac{\theta }{2}\left( \kappa -1+2\text {sin}^2\frac{\theta }{2}\right) \nonumber \\&+\frac{(1+\nu )K_{II}}{E}\sqrt{\frac{r}{2\pi }}\text {sin}\frac{\theta }{2}\left( \kappa +1 +2\text {cos}^2\frac{\theta }{2}\right) \nonumber \\ u_y(r,\theta )= & {} \,\frac{K_I}{2\mu }\sqrt{\frac{r}{2\pi }} \text {sin}\frac{\theta }{2}\left( \kappa +1-2\text {cos}^2\frac{\theta }{2}\right) \nonumber \\&+\frac{(1+\nu )K_{II}}{E}\sqrt{\frac{r}{2\pi }}\text {cos}\frac{\theta }{2}\left( 1-\kappa +2\text {sin}^2\frac{\theta }{2}\right) \nonumber \\ \end{aligned}$$
(70)

where \((r,\theta )\) are the crack tip polar coordinates and

$$\begin{aligned} \mu= & {} \frac{E}{2(1+\nu )} \end{aligned}$$
(71)
$$\begin{aligned} \kappa= & {} \left\{ \begin{array}{ll} 3-4\nu , &{}\quad \text {Plane strain} \\ (1-\nu )/(3+\nu ), &{}\quad \text {Plane stress} \\ \end{array}\right. \end{aligned}$$
(72)

The auxiliary strain field can be obtained by differentiating \(u_j\) with respect to the physical coordinate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Atroshchenko, E., Kerfriden, P. et al. Linear elastic fracture simulation directly from CAD: 2D NURBS-based implementation and role of tip enrichment. Int J Fract 204, 55–78 (2017). https://doi.org/10.1007/s10704-016-0153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0153-3

Keywords

Navigation