[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Application of “OTSU”—an image segmentation method for differentiation of snow and ice regions of glaciers and assessment of mass budget in Chandra basin, Western Himalaya using Remote Sensing and GIS techniques

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, an image segmentation algorithm (“OTSU”) is applied for differentiation of snow/ice regions followed by interpretation of snowlines and estimation of mass budget of glaciers in Chandra basin, Western Himalaya, India between 2014 and 2020. The observations strongly suggest that the OTSU method can be used to differentiate the snow and ice regions on a glacier accurately from any satellite image, irrespective of the sensor characteristics. Also, this method suits well to delineate the snowlines for large sample of glaciers, other than the manual interpretation and semi-automated methods. The estimates of mass budget of the glaciers are observed varying from − 1.20 ± 0.51 m w.e to almost 0.64 ± 0.51 m w.e, with a total loss of − 61.91 ± 6.70 m w.e of ice mass at basin scale during the observation period. Based on this study, it is highly recommended the application of OTSU method for the differentiation of snow/ice zones of glaciers and snowline demarcation at a large spatial scale in the harsh weather rugged terrain of the Western Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  • Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., & Bajracharya, S. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314.

    Article  CAS  Google Scholar 

  • Bishop, M. P., Olsenholler, J. A., Shroder, J. F., Barry, R. G., Raup, B. H., Bush, A. B., Copland, L., Dwyer, J. L., Fountain, A. G., Haeberli, W., & Kääb, A. (2004). Global Land Ice Measurements from Space (GLIMS): Remote sensing and GIS investigations of the Earth’s cryosphere. Geocarto International, 19(2), 57–84.

    Article  Google Scholar 

  • Braithwaite, R. J., & Zhang, Y. (1999). Modelling changes in glacier mass balance that may occur as a result of climate changes. Geografiska Annaler: Series a, Physical Geography, 81(4), 489–496.

    Article  Google Scholar 

  • Braithwaite, R. J. (1984). Calculation of degree-days for glacier-climate research. Z. Gletscherkd. Glazialgeol, 20, 1–20.

    Google Scholar 

  • Bronge, L. B., & Bronge, C. (1999). Ice and snow-type classification in the Vestfold Hills, East Antarctica, using Landsat-TM data and ground radiometer measurements. International Journal of Remote Sensing, 20(2), 225-240.

  • Chan, J. C. W., Van Ophem, J., & Huybrechts, P. (2009). Estimation of accumulation area ratio of a glacier from multitemporal satellite images using spectral unmixing. IEEE International Geoscience and Remote Sensing Symposium, 2, 606.

    Google Scholar 

  • Cuffey, K. M., & Paterson, W. S. B. (2010). The physics of glaciers. Academic Press.

    Google Scholar 

  • De Angelis, H. (2007). Glacial geomorphology of the east-central Canadian Arctic. Journal of Maps, 3(1), 323–341.

  • Duethmann, D., Bolch, T., Farinotti, D., Kriegel, D., Vorogushyn, S., Merz, B., Pieczonka, T., Jiang, T., Su, B. & Güntner, A. (2015). Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River Central Asia. Water Resources Research 51(6), 4727–4750. https://doi.org/10.1002/2014WR016716

  • Yin, D., Cao, X., Chen, X., Shao, Y., & Chen, J. (2013). Comparison of automatic thresholding methods for snow-cover mapping using Landsat TM imagery. International Journal of Remote Sensing, 34(19), 6529–6538.

    Article  Google Scholar 

  • Farinotti, D., Longuevergne, L., Moholdt, G., Duethmann, D., Mölg, T., Bolch, T., Vorogushyn, S., & Güntner, A. (2015). Substantial glacier mass loss in the Tien Shan over the past 50 years. Nature Geoscience, 8(9), 716–722.

    Article  CAS  Google Scholar 

  • Guo, Z., Wang, N., Kehrwald, N. M., Mao, R., Wu, H., Wu, Y., & Jiang, X. (2014). Temporal and spatial changes in Western Himalayan firn line altitudes from 1998 to 2009. Global and Planetary Change, 118, 97–105.

    Article  Google Scholar 

  • Gaddam, V. K., Kulkarni, A. V., & Gupta, A. K. (2016). Estimation of glacial retreat and mass loss in Baspa basin, Western Himalaya. Spatial Information Research, 24(3), 257–266.

    Article  Google Scholar 

  • Gaddam, V. K., Kulkarni, A. V., & Gupta, A. K. (2020). Assessment of the Baspa basin glaciers mass budget using different remote sensing methods and modeling techniques. Geocarto International, 35(3), 296–316.

    Article  Google Scholar 

  • Hanshaw, M. N., & Bookhagen, B. (2014). Glacial areas, lake areas, and snow lines from 1975 to 2012: Status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru. The Cryosphere, 8(2), 359–376.

    Article  Google Scholar 

  • Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1), 1–18.

    Article  Google Scholar 

  • Hall, D. K., & Riggs, G. A. (2010). Normalized-difference snow index (NDSI).

  • Huss, M. (2011). Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resources Research47(7).

  • Haeberli, W., & Hölzle, M. (1995). Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps. Annals of Glaciology, 21, 206–212.

    Article  Google Scholar 

  • Huss, M., Bookhagen, B., Huggel, C., Jacobsen, D., Bradley, R. S., Clague, J. J., Vuille, M., Buytaert, W., Cayan, D. R., Greenwood, G., & Mark, B. G. (2017). Toward mountains without permanent snow and ice. Earth’s Future, 5(5), 418–435.

    Article  Google Scholar 

  • Immerzeel, W. (2020). Water Towers Threatened. Chemistry and Industry, 84(12), 30–33.

    Article  CAS  Google Scholar 

  • Kääb, A., Berthier, E., Nuth, C., Gardelle, J., & Arnaud, Y. (2012). Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495–498.

    Article  CAS  Google Scholar 

  • Kulkarni, A. V. (2010). Monitoring Himalayan cryosphere using remote sensing techniques. Journal of the Indian Institute of Science, 90(4), 457–469.

    Google Scholar 

  • Krajčí, P., Holko, L., Perdigão, R. A., & Parajka, J. (2014). Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. Journal of Hydrology, 519, 1769–1778.

    Article  Google Scholar 

  • Krijger, J. M., Aben, I., & Schrijver, H. (2005). Distinction between clouds and ice/snow covered surfaces in the identification of cloud-free observations using SCIAMACHY PMDs. Atmospheric Chemistry and Physics, 5(10), 2729–2738.

    Article  CAS  Google Scholar 

  • Kulkarni, A. V., Randhawa, S. S., Rathore, B. P., Bahuguna, I. M., & Sood, R. K. (2002). Snow and glacier melt runoff model to estimate hydropower potential. Journal of the Indian Society of Remote Sensing, 30(4), 221–228.

    Article  Google Scholar 

  • Kuhn, M. (1989). The response of the equilibrium line altitude to climate fluctuations: theory and observations. In Glacier fluctuations and climatic change Springer Dordrecht, 407–417).

  • Liu, C., Li, Z., Zhang, P., Tian, B., Zhou, J., & Chen, Q. (2021). Variability of the snowline altitude in the eastern Tibetan Plateau from 1995 to 2016 using Google Earth Engine. Journal of Applied Remote Sensing, 15(4), 048505.

  • Lemke, P., Ren, J., Alley, R. B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R. H., & Zhang, T. (2007). Observations: changes in snow, ice and frozen ground.

  • Maurício, C. R., Cordeiro, J.-M., & Santiago Pe˜na-Luque,. (2021). Automatic water detection from multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors. Remote Sensing of Environment, 253, 112209. https://doi.org/10.1016/j.rse.2020.112209

    Article  Google Scholar 

  • Medwedeff, W. G., & Roe, G. H. (2017). Trends and variability in the global dataset of glacier mass balance. Climate Dynamics, 48, 3085–3097.

    Article  Google Scholar 

  • Mark, B. G., McKenzie, J. M. & Gomez, J. (2005). Hydrochemical evaluation of changing glacier meltwater contribution to stream discharge: Callejon de Huaylas, Peru/Evaluation hydrochimique de la contribution évolutive de la fonte glaciaire à l'écoulement fluvial: Callejon de Huaylas, Pérou. Hydrological Sciences Journal, 50(6).

  • Mandal, A., Ramanathan, A., Azam, M. F., Angchuk, T., Soheb, M., Kumar, N., Pottakkal, J. G., Vatsal, S., Mishra, S., & Singh, V. B. (2020). Understanding the interrelationships among mass balance, meteorology, discharge and surface velocity on Chhota Shigri Glacier over 2002–2019 using in situ measurements. Journal of Glaciology, 66(259), 727–741.

    Article  Google Scholar 

  • McFadden, E. M., Ramage, J., & Rodbell, D. T. (2011). Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005. The Cryosphere, 5(2), 419–430.

    Article  Google Scholar 

  • Nagajyothi, V., Priya, M. G., Sharma, P., & Bahuguna, I.M. (2020). Mass balance of glaciers in Bhaga basin, Western Himalaya: A geospatial and temperature-weighted AAR based model approach. Current Science, 119(12).

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernetics, 9, 62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  • Purinton, B., & Bookhagen, B. (2017). Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau. Earth Surface Dynamics, 5(2), 211–237.

    Article  Google Scholar 

  • Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J. O., Hock, R., Kaser, G., Kienholz, C., & Miles, E. S. (2014). The Randolph Glacier Inventory: A globally complete inventory of glaciers. Journal of Glaciology, 60(221), 537–552.

    Article  Google Scholar 

  • Pandey, P., Kulkarni, A. V., & Venkataraman, G. (2013). Remote sensing study of snowline altitude at the end of melting season, Chandra-Bhaga basin, Himachal Pradesh, 1980–2007. Geocarto International, 28(4), 311–322.

    Article  Google Scholar 

  • Painter, T. H., Roberts, D. A., Green, R. O., & Dozier, J. (1998). The effect of grain size on spectral mixture analysis of snow-covered area from AVIRIS data. Remote Sensing of Environment, 65(3), 320–332.

    Article  Google Scholar 

  • Raup, B., Racoviteanu, A., Khalsa, S. J. S., Helm, C., Armstrong, R., & Arnaud, Y. (2007a). The GLIMS geospatial glacier database: A new tool for studying glacier change. Global and Planetary Change, 56(1–2), 101–110.

    Article  Google Scholar 

  • Raup, B., Kääb, A., Kargel, J. S., Bishop, M. P., Hamilton, G., Lee, E., Paul, F., Rau, F., Soltesz, D., Khalsa, S. J. S., & Beedle, M. (2007b). Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. Computers and Geosciences, 33(1), 104–125.

    Article  Google Scholar 

  • Roe, G. H., & Baker, M. B. (2016). The response of glaciers to climatic persistence. Journal of Glaciology, 62(233), 440–450.

    Article  Google Scholar 

  • Rastner, P., Prinz, R., Notarnicola, C., Nicholson, L., Sailer, R., Schwaizer, G., & Paul, F. (2019). On the automated mapping of snow cover on glaciers and calculation of snow line altitudes from multi-temporal landsat data. Remote Sensing, 11(12), 1410.

    Article  Google Scholar 

  • Rabatel, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J. L., Basantes, R., Vuille, M., Sicart, J. E., Huggel, C., & Scheel, M. (2013). Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. The Cryosphere, 7(1), 81–102.

    Article  Google Scholar 

  • Rabatel, A., Sirguey, P., Drolon, V., Maisongrande, P., Arnaud, Y., Berthier, E., Davaze, L., Dedieu, J. P., & Dumont, M. (2017). Annual and seasonal glacier-wide surface mass balance quantified from changes in glacier surface state: A review on existing methods using optical satellite imagery. Remote Sensing, 9(5), 507.

    Article  Google Scholar 

  • Rabatel, A., Dedieu, J. P., & Vincent, C. (2005). Using remote-sensing data to determine equilibrium-line altitude and mass-balance time series: Validation on three French glaciers, 1994–2002. Journal of Glaciology, 51(175), 539–546.

    Article  Google Scholar 

  • Stumm, D., Joshi, S. P., Gurung, T. R. & Silwal, G. (2020). Mass balances of Yala and Rikha Samba Glacier, Nepal from 2000 to 2017. Earth System Science Data Discussions, 1–37.

  • Mahajan, S., & Fataniya, B. (2020). Cloud detection methodologies: Variants and development—A review. Complex & Intelligent Systems, 6(2), 251–261.

    Article  Google Scholar 

  • Paterson, W. S. B. (1994). The physics of glaciers. 3rd edition. Oxford, etc., Pergamon, 480 pp. ISBN 0-08037945.

  • Pfeffer, W., Arendt, A., Bliss, A., Bolch, T., Cogley, J., Gardner, A., ..Sharp, M. (2014). The Randolph Glacier Inventory: A globally complete inventory of glaciers. Journal of Glaciology, 60(221), 537–552. https://doi.org/10.3189/2014JoG13J176

  • Sidjak, R. W. (1999). Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and digital elevation data. International Journal of Remote Sensing, 20(2), 273–284.

    Article  Google Scholar 

  • Singh, A. T., Rahaman, W., Sharma, P., Laluraj, C. M., Patel, L. K., Pratap, B., Gaddam, V. K., & Thamban, M. (2019). Moisture sources for precipitation and hydrograph components of the sutri dhaka glacier basin, western himalayas. Water, 11(11), 2242.

    Article  CAS  Google Scholar 

  • Shiramizu, K., Doi, K., & Aoyama, Y. (2017). Generation of a high-accuracy regional DEM based on ALOS/PRISM imagery of East Antarctica. Polar Science, 14, 30–38.

  • Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H. O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., Van Diemen, R. & Ferrat, M. (2019). IPCC, 2019: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.

  • Soheb, M., Ramanathan, A., Angchuk, T., Mandal, A., Kumar, N., & Lotus, S. (2020). Mass-balance observation, reconstruction and sensitivity of Stok glacier, Ladakh region, India, between 1978 and 2019. Journal of Glaciology, 66(258), 627–642.

    Article  Google Scholar 

  • Tawde, S. A., Kulkarni, A. V., & Bala, G. (2019). An assessment of climate change impacts on glacier mass balance and geometry in the Chandra Basin, Western Himalaya for the 21st century. Environmental Research Communications, 1(4), 041003.

  • Tawde, S. A., Kulkarni, A. V., & Bala, G. (2017). An estimate of glacier mass balance for the Chandra basin, western Himalaya, for the period 1984–2012. Annals of Glaciology, 58(75pt2), pp.99–109.

  • Tawde, S. A., Kulkarni, A. V., & Bala, G. (2018). April. 21st century projections of glacier mass balance, extent and volume for the Chandra Basin using downscaled CMIP5 data and a glacier geometry model. EGU General Assembly Conference Abstracts, 394.

  • Vijay, S., & Braun, M. (2016). Elevation change rates of glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013. Remote Sensing, 8(12), 1038.

    Article  Google Scholar 

  • Wagnon, P., Linda, A., Arnaud, Y., Kumar, R., Sharma, P., Vincent, C., Pottakkal, J. G., Berthier, E., Ramanathan, A., Hasnain, S. I., & Chevallier, P. (2007). Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. Journal of Glaciology, 53(183), 603–611.

    Article  Google Scholar 

  • Yuwei, W. U., Jianqiao, H. E., Zhongming, G. U. O., & Anan, C. (2014). Limitations in identifying the equilibrium-line altitude from the optical remote-sensing derived snowline in the Tien Shan, China. Journal of Glaciology, 60(224), 1093–1100.

    Article  Google Scholar 

  • Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., & Thomson, L. (2019). Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568(7752), 382–386.

    Article  CAS  Google Scholar 

  • Yan, D., Huang, C., Ma, N., & Zhang, Y. (2020). Improved landsat-based water and snow indices for extracting lake and snow cover/glacier in the tibetan plateau. Water, 12(5), 1339.

    Article  Google Scholar 

Download references

Acknowledgements

This work is a part of the Research work being carried by the second author and submitted for research degree at JNTUK. Corresponding author and second author would like to thank Chairman Shri Ravindranath Tagore, Dhanekula Institute of Technology, JNTU Kakinada and Dr. M. Ravichandran, Director NCPOR, Dr. Meloth Thamban, Group Director- Himalayan Cryosphere, NCPOR for the support provided during the study. All the Authors would like to thank USGS, JAXA, ISRO-NRSC, MOES-NCPOR for providing the datasets used for Research purpose. A special thanks to World data bank and CWC for providing the CRU climate datasets and Moorang meteorological observatory data. The contribution number of the publication is Dhan/Pub/Civ/GVK-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar Gaddam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaddam, V.K., Boddapati, R., Kumar, T. et al. Application of “OTSU”—an image segmentation method for differentiation of snow and ice regions of glaciers and assessment of mass budget in Chandra basin, Western Himalaya using Remote Sensing and GIS techniques. Environ Monit Assess 194, 337 (2022). https://doi.org/10.1007/s10661-022-09945-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09945-2

Keywords

Navigation