[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

The effectiveness of digital soil mapping to predict soil properties over low-relief areas

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study investigates the ability of different digital soil mapping (DSM) approaches to predict some of physical and chemical topsoil properties in the Shahrekord plain of Chaharmahal-Va-Bakhtiari province, Iran. According to a semi-detailed soil survey, 120 soil samples were collected from 0 to 30 cm depth with approximate distance of 750 m. Particle size distribution, coarse fragments (CFs), electrical conductivity (EC), pH, organic carbon (OC), and calcium carbonate equivalent (CCE) were determined. Four machine learning techniques, namely, artificial neural networks (ANNs), boosted regression tree (BRT), generalized linear model (GLM), and multiple linear regression (MLR), were used to identify the relationship between soil properties and auxiliary information (terrain attributes, remote sensing indices, geology map, existing soil map, and geomorphology map). Root-mean-square error (RMSE) and mean error (ME) were considered to determine the performance of the models. Among the studied models, GLM showed the highest performance to predict pH, EC, clay, silt, sand, and CCE, whereas the best model is not necessarily able to make accurate estimation. According to RMSE%, DSM has a good efficiency to predict soil properties with low and moderate variabilities. Terrain attributes were the main predictors among different studied auxiliary information. The accuracy of the estimations with more observations is recommended to give a better understanding about the performance of DSM approach over low-relief areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adhikari, K., Bou Kheir, R., Greve, M. B., Bocher, P. K., Malone, B. P., Minasny, B., McBratney, A. B., & Greve, M. H. (2012). High-resolution 3-D mapping of soil texture in Denmark. Soil Science Society of America Journal, 77(3), 860–876.

    Article  Google Scholar 

  • Adhikari, K., Hartemink, A. E., Minasny, B., Bou Kheir, R., & Greve, M. B. (2014). Digital mapping of soil organic carbon contents and stocks in Denmark. PLOS ONE, 9(8), 1–13.

    Article  Google Scholar 

  • Akaike, H. (1973). Information theory and an extension of maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second international symposium on information theory (pp. 267–281). Akademia Kiado: Budapest.

    Google Scholar 

  • Akpa, S. I. C., Odeh, I. O. A., Bishop, T. F. A., & Hartemink, A. E. (2014). Digital mapping of soil particle-size fractions for Nigeria. Soil Science Society of America Journal, 78(6), 1953–1966.

    Article  CAS  Google Scholar 

  • Akramkhanov, A., Martius, C., Park, S. J., & Hendrickx, J. M. H. (2011). Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma, 163(1), 55–62.

    Article  Google Scholar 

  • Aksoy, E., Panagos, P., & Montanarella, L. (2012). Spatial prediction of soil organic carbon of Crete by using geostatistics. In B. Minasny, B. P. Malone, & A. B. McBratney (Eds.), Digital soil assessments and beyond (pp. 149–159). London: CRC Press.

    Chapter  Google Scholar 

  • Alan Nath, D. (2006) Soil landscape modeling in the Northwest Iowa plains. Ph.D. Dissertation, Iowa State University. Digital Repository @ Iowa State University. 

  • Alijani, Z., & Sarmadian, F. (2014). The role of topography in changing of soil carbonate content. Indian Journal Science Research, 6(1), 263–271.

    Google Scholar 

  • Besalatpour, A. A., Ayoubi, S., Hajabbasi, M. A., Mosaddeghi, M. R., Schulin, R. (2013) Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed. Catena, 111(1), 72–79.

  • Boettinger, J. L., Ramsey, R. D., Bodily, J. M., Cole, N. J., Kienast-Brown, S., Nield, S. J., Saunders, A. M., & Stum, A. K. (2008). Landsat spectral data for digital soil mapping. In A. E. Hartemink, A. B. McBratney, & M. L. Mendonc¸a-Santos (Eds.), Digital soil mapping with limited data (pp. 193–203). Australia: Springer.

    Chapter  Google Scholar 

  • Bou Kheir, R., Greve, M. H., Bocher, P. K., Greve, M. B., & Larsen, R. (2010). Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: the case study of Denmark. Journal of Environmental Management, 91(5), 50–60.

    Article  Google Scholar 

  • Castrignano, A., Buttafuoco, D., & Comolli, R. (2011). Using digital elevation model to improve soil pH prediction in an alpine doline. Pedosphere, 21(2), 259–270.

    Article  Google Scholar 

  • Draper, N., & Smith, H. (1998). Applied regression analysis. New York, DC: Wiley.

    Book  Google Scholar 

  • Edward, E., Walter, W., Kevin, S., Susan, D., Linda, J., Christman, M., West, M., & Kramer, M. (2012). Analysis of generalized linear mixed models in the agricultural and natural resources sciences. Madison, DC: Soil Science Society of Agronomy.

    Google Scholar 

  • Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802–813.

    Article  CAS  Google Scholar 

  • Florinsky, I., Eilers, R., Manning, G., & Fuller, L. (2002). Prediction of soil properties by terrain modeling. Environmental Modelling and Software, 17(3), 295–311.

    Article  Google Scholar 

  • Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(2), 1189–1232.

    Article  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In A. Klute (Ed.), Methods of soil analysis (pp. 383–411). Madison: American Society of Agronomy.

    Google Scholar 

  • Gobin, A., Campling, P., & Feyen, J. (2001). Soil-landscape modeling to quantify spatial variability of soil texture. Physics and Chemistry of the Earth, 26(1), 41–45.

    Article  Google Scholar 

  • Goodman, J. M., & Owens, P. R. (2012). Predicting soil organic carbon using mixed conceptual and geostatistical models. In B. Minasny, B. P. Malone, & A. B. McBratney (Eds.), Digital soil assessments and beyond (pp. 155–159). London: CRC Press.

    Chapter  Google Scholar 

  • Goovaerts, P. (2011). A coherent geostatistical approach for combining choropleth map and field data in the spatial interpolation of soil properties. European Journal of Soil Sciences, 62(3), 371–380.

    Article  Google Scholar 

  • Hengl, T., Huvelink, G. B. M., & Stein, A. (2004). A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120(1–2), 75–93.

    Article  Google Scholar 

  • Hengl, T., Heuvelink, G. B. M., & Rossiter, D. G. (2007). About regression-kriging: from equations to case studies. Computers and Geosciences, 33(10), 1301–1315.

    Article  Google Scholar 

  • Jafari, A., Ayoubi, S., Khademi, H., Finke, P. A., Toomanian, N. (2013). Selection of a taxonomic level for soil mapping using diversity and map purity indices: a case study from an Iranian arid region. Geomorphology, 201(1), 86–97.

  • Khosravi, H., Zehtabiana, G. R., Ahmadib, H., & Azarnivanda, H. (2014). Hazard assessment of desertification as a result of soil and water recourse degradation in Kashan region, Iran. Desert, 19(1), 45–55.

    Google Scholar 

  • Lacoste, M., Lemercier, B., & Walter, C. (2011). Regional mapping of soil parent material by machine learning based on point data. Geomorphology, 133(1), 90–99.

    Article  Google Scholar 

  • Lumley, T. (2009) Regression subset selection. (http://CRAN.com).

  • Marques, M. A., & Mora, E. (1992). The influence of aspect on runoff and soil loss in a Mediterranean burnt forest (Spain). Catena, 19(1), 333–343.

    Article  Google Scholar 

  • McBratney, A. B., Mendonc, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52.

    Article  Google Scholar 

  • Mitas, L., & Mitasova, H. (1999). Spatial interpolation. In P. A. Longley, M. F. Goodchild, D. J. Maguire, & D. W. Rhind (Eds.), Geographical information systems: principles, techniques, management and applications (pp. 481–492). New York: Wiley.

    Google Scholar 

  • Mohammadi, M. (1986) Semi-detailed soil studies report Chaharmahal-Va-Bakhtiari province (Shahrekord and Borujen area). Tehran, Iran: Iranian Soil and Water Research Institute. 

  • Moore, I., Gessler, P., & Nielson, G. (1993). Soil attributes prediction using terrain analysis. Soil Science Society of America Journal, 57(2), 443–452.

    Article  Google Scholar 

  • Nelson, R. E. (1982). Carbonate and gypsum. In A. L. Page (Ed.), Methods of soil analysis (pp. 181–197). Madison: American Society of Agronomy.

    Google Scholar 

  • Olaya, V. F. (2004). A gentle introduction to SAGA GIS. User Manual. Germany, DC: Gottingen.

    Google Scholar 

  • Oliver, M. A. (2010). Geostatistical applications for precision agriculture. London: Springer Dordrecht Heidelberg.

    Book  Google Scholar 

  • Padarian, J., Perez-Quezada, J., & Seguel, S. (2012). Modeling the distribution of organic carbon in the soils of Chile. In B. Minasny, B. P. Malone, & A. B. McBratney (Eds.), Digital soil assessments and beyond (pp. 329–333). London: CRC Press.

    Chapter  Google Scholar 

  • Pahlavan Rad, M. R., Toomanian, N., Khormali, F., Brungard, C. W., Komaki, C. B., & Bogaert, P. (2014). Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran. Geoderma, 232–234(1), 97–106.

    Article  Google Scholar 

  • Park, S. J., & Vlek, P. L. G. (2002). Environmental correlation of three-dimensional soil spatial variability: a comparison of three adaptive techniques. Geoderma, 109(1–2), 117–140.

    Article  CAS  Google Scholar 

  • Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43(1), 1541–1552.

    Google Scholar 

  • Rossiter, D. G. (2000). Methodology for soil resource inventories. Lecture notes. 2nd revised version. Enschede, The Netherlands: Soil Science Division, International Institute for Aerospace Survey and Earth Science (ITC.

    Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plain with ERTS. NASA, Scientific and Technical Information Office: Third ERTS Symposium.

    Google Scholar 

  • Soil Survey Staff. (2014). Soil taxonomy: a basic systems of soil classification for making and interpreting soil surveys (Twelfthth ed.). USDA: NRCS.

    Google Scholar 

  • Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., & Malone, B. P. (2014). Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213, 15–28.

    Article  CAS  Google Scholar 

  • Thomas, P. J., Baker, J. C., Zelazny, L. W., & Hatch, D. R. (2000). Relationship of map unit variability to shrink–swell indicators. Soil Science Society of America Journal, 64(1), 262–268.

    Article  CAS  Google Scholar 

  • US Geology Survey. (2014). Geology.com/news/2010/free-lansat-images-from-USGS-2. (http://glovis.usgs.gov).

  • Walkley, A., & Black, I. A. (1934). An examination of degtjareff method for determining soil organic matter and a proposed modification of chromic acid in soil analysis. Soil Science Society of America Journal, 79(1), 459–465.

    Google Scholar 

  • Webster, K. L., Creed, I. L., Beall, F. D., & Bourbonnière, R. A. (2011). A topographic template for estimating soil carbon pools in forested catchments. Geoderma, 160(3–4), 457–467.

    Article  CAS  Google Scholar 

  • Wiesmeier, M., Barthold, F., Blank, B., & Kögel-Knabner, I. (2011). Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem. Plant Soil, 340(1), 7–24.

    Article  CAS  Google Scholar 

  • Wilding, L. P. (1985). Spatial variability: its documentation, accommodation and implication to soil surveys. In D. R. Nielsen & J. Bouma (Eds.), Soil spatial variability (pp. 166–194). The Netherlands: Wageningen.

  • Zinck, J. A. (1989). Physiography and soils (Lecture notes for soil students. Soil Science Division, Soil survey courses subject matter, K6). Enschede, The Netherlands: ITC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Salehi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosleh, Z., Salehi, M.H., Jafari, A. et al. The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environ Monit Assess 188, 195 (2016). https://doi.org/10.1007/s10661-016-5204-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5204-8

Keywords

Navigation