Abstract
This study investigates the ability of different digital soil mapping (DSM) approaches to predict some of physical and chemical topsoil properties in the Shahrekord plain of Chaharmahal-Va-Bakhtiari province, Iran. According to a semi-detailed soil survey, 120 soil samples were collected from 0 to 30 cm depth with approximate distance of 750 m. Particle size distribution, coarse fragments (CFs), electrical conductivity (EC), pH, organic carbon (OC), and calcium carbonate equivalent (CCE) were determined. Four machine learning techniques, namely, artificial neural networks (ANNs), boosted regression tree (BRT), generalized linear model (GLM), and multiple linear regression (MLR), were used to identify the relationship between soil properties and auxiliary information (terrain attributes, remote sensing indices, geology map, existing soil map, and geomorphology map). Root-mean-square error (RMSE) and mean error (ME) were considered to determine the performance of the models. Among the studied models, GLM showed the highest performance to predict pH, EC, clay, silt, sand, and CCE, whereas the best model is not necessarily able to make accurate estimation. According to RMSE%, DSM has a good efficiency to predict soil properties with low and moderate variabilities. Terrain attributes were the main predictors among different studied auxiliary information. The accuracy of the estimations with more observations is recommended to give a better understanding about the performance of DSM approach over low-relief areas.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adhikari, K., Bou Kheir, R., Greve, M. B., Bocher, P. K., Malone, B. P., Minasny, B., McBratney, A. B., & Greve, M. H. (2012). High-resolution 3-D mapping of soil texture in Denmark. Soil Science Society of America Journal, 77(3), 860–876.
Adhikari, K., Hartemink, A. E., Minasny, B., Bou Kheir, R., & Greve, M. B. (2014). Digital mapping of soil organic carbon contents and stocks in Denmark. PLOS ONE, 9(8), 1–13.
Akaike, H. (1973). Information theory and an extension of maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Second international symposium on information theory (pp. 267–281). Akademia Kiado: Budapest.
Akpa, S. I. C., Odeh, I. O. A., Bishop, T. F. A., & Hartemink, A. E. (2014). Digital mapping of soil particle-size fractions for Nigeria. Soil Science Society of America Journal, 78(6), 1953–1966.
Akramkhanov, A., Martius, C., Park, S. J., & Hendrickx, J. M. H. (2011). Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma, 163(1), 55–62.
Aksoy, E., Panagos, P., & Montanarella, L. (2012). Spatial prediction of soil organic carbon of Crete by using geostatistics. In B. Minasny, B. P. Malone, & A. B. McBratney (Eds.), Digital soil assessments and beyond (pp. 149–159). London: CRC Press.
Alan Nath, D. (2006) Soil landscape modeling in the Northwest Iowa plains. Ph.D. Dissertation, Iowa State University. Digital Repository @ Iowa State University.
Alijani, Z., & Sarmadian, F. (2014). The role of topography in changing of soil carbonate content. Indian Journal Science Research, 6(1), 263–271.
Besalatpour, A. A., Ayoubi, S., Hajabbasi, M. A., Mosaddeghi, M. R., Schulin, R. (2013) Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed. Catena, 111(1), 72–79.
Boettinger, J. L., Ramsey, R. D., Bodily, J. M., Cole, N. J., Kienast-Brown, S., Nield, S. J., Saunders, A. M., & Stum, A. K. (2008). Landsat spectral data for digital soil mapping. In A. E. Hartemink, A. B. McBratney, & M. L. Mendonc¸a-Santos (Eds.), Digital soil mapping with limited data (pp. 193–203). Australia: Springer.
Bou Kheir, R., Greve, M. H., Bocher, P. K., Greve, M. B., & Larsen, R. (2010). Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: the case study of Denmark. Journal of Environmental Management, 91(5), 50–60.
Castrignano, A., Buttafuoco, D., & Comolli, R. (2011). Using digital elevation model to improve soil pH prediction in an alpine doline. Pedosphere, 21(2), 259–270.
Draper, N., & Smith, H. (1998). Applied regression analysis. New York, DC: Wiley.
Edward, E., Walter, W., Kevin, S., Susan, D., Linda, J., Christman, M., West, M., & Kramer, M. (2012). Analysis of generalized linear mixed models in the agricultural and natural resources sciences. Madison, DC: Soil Science Society of Agronomy.
Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802–813.
Florinsky, I., Eilers, R., Manning, G., & Fuller, L. (2002). Prediction of soil properties by terrain modeling. Environmental Modelling and Software, 17(3), 295–311.
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(2), 1189–1232.
Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In A. Klute (Ed.), Methods of soil analysis (pp. 383–411). Madison: American Society of Agronomy.
Gobin, A., Campling, P., & Feyen, J. (2001). Soil-landscape modeling to quantify spatial variability of soil texture. Physics and Chemistry of the Earth, 26(1), 41–45.
Goodman, J. M., & Owens, P. R. (2012). Predicting soil organic carbon using mixed conceptual and geostatistical models. In B. Minasny, B. P. Malone, & A. B. McBratney (Eds.), Digital soil assessments and beyond (pp. 155–159). London: CRC Press.
Goovaerts, P. (2011). A coherent geostatistical approach for combining choropleth map and field data in the spatial interpolation of soil properties. European Journal of Soil Sciences, 62(3), 371–380.
Hengl, T., Huvelink, G. B. M., & Stein, A. (2004). A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120(1–2), 75–93.
Hengl, T., Heuvelink, G. B. M., & Rossiter, D. G. (2007). About regression-kriging: from equations to case studies. Computers and Geosciences, 33(10), 1301–1315.
Jafari, A., Ayoubi, S., Khademi, H., Finke, P. A., Toomanian, N. (2013). Selection of a taxonomic level for soil mapping using diversity and map purity indices: a case study from an Iranian arid region. Geomorphology, 201(1), 86–97.
Khosravi, H., Zehtabiana, G. R., Ahmadib, H., & Azarnivanda, H. (2014). Hazard assessment of desertification as a result of soil and water recourse degradation in Kashan region, Iran. Desert, 19(1), 45–55.
Lacoste, M., Lemercier, B., & Walter, C. (2011). Regional mapping of soil parent material by machine learning based on point data. Geomorphology, 133(1), 90–99.
Lumley, T. (2009) Regression subset selection. (http://CRAN.com).
Marques, M. A., & Mora, E. (1992). The influence of aspect on runoff and soil loss in a Mediterranean burnt forest (Spain). Catena, 19(1), 333–343.
McBratney, A. B., Mendonc, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52.
Mitas, L., & Mitasova, H. (1999). Spatial interpolation. In P. A. Longley, M. F. Goodchild, D. J. Maguire, & D. W. Rhind (Eds.), Geographical information systems: principles, techniques, management and applications (pp. 481–492). New York: Wiley.
Mohammadi, M. (1986) Semi-detailed soil studies report Chaharmahal-Va-Bakhtiari province (Shahrekord and Borujen area). Tehran, Iran: Iranian Soil and Water Research Institute.
Moore, I., Gessler, P., & Nielson, G. (1993). Soil attributes prediction using terrain analysis. Soil Science Society of America Journal, 57(2), 443–452.
Nelson, R. E. (1982). Carbonate and gypsum. In A. L. Page (Ed.), Methods of soil analysis (pp. 181–197). Madison: American Society of Agronomy.
Olaya, V. F. (2004). A gentle introduction to SAGA GIS. User Manual. Germany, DC: Gottingen.
Oliver, M. A. (2010). Geostatistical applications for precision agriculture. London: Springer Dordrecht Heidelberg.
Padarian, J., Perez-Quezada, J., & Seguel, S. (2012). Modeling the distribution of organic carbon in the soils of Chile. In B. Minasny, B. P. Malone, & A. B. McBratney (Eds.), Digital soil assessments and beyond (pp. 329–333). London: CRC Press.
Pahlavan Rad, M. R., Toomanian, N., Khormali, F., Brungard, C. W., Komaki, C. B., & Bogaert, P. (2014). Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran. Geoderma, 232–234(1), 97–106.
Park, S. J., & Vlek, P. L. G. (2002). Environmental correlation of three-dimensional soil spatial variability: a comparison of three adaptive techniques. Geoderma, 109(1–2), 117–140.
Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43(1), 1541–1552.
Rossiter, D. G. (2000). Methodology for soil resource inventories. Lecture notes. 2nd revised version. Enschede, The Netherlands: Soil Science Division, International Institute for Aerospace Survey and Earth Science (ITC.
Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plain with ERTS. NASA, Scientific and Technical Information Office: Third ERTS Symposium.
Soil Survey Staff. (2014). Soil taxonomy: a basic systems of soil classification for making and interpreting soil surveys (Twelfthth ed.). USDA: NRCS.
Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., & Malone, B. P. (2014). Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213, 15–28.
Thomas, P. J., Baker, J. C., Zelazny, L. W., & Hatch, D. R. (2000). Relationship of map unit variability to shrink–swell indicators. Soil Science Society of America Journal, 64(1), 262–268.
US Geology Survey. (2014). Geology.com/news/2010/free-lansat-images-from-USGS-2. (http://glovis.usgs.gov).
Walkley, A., & Black, I. A. (1934). An examination of degtjareff method for determining soil organic matter and a proposed modification of chromic acid in soil analysis. Soil Science Society of America Journal, 79(1), 459–465.
Webster, K. L., Creed, I. L., Beall, F. D., & Bourbonnière, R. A. (2011). A topographic template for estimating soil carbon pools in forested catchments. Geoderma, 160(3–4), 457–467.
Wiesmeier, M., Barthold, F., Blank, B., & Kögel-Knabner, I. (2011). Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem. Plant Soil, 340(1), 7–24.
Wilding, L. P. (1985). Spatial variability: its documentation, accommodation and implication to soil surveys. In D. R. Nielsen & J. Bouma (Eds.), Soil spatial variability (pp. 166–194). The Netherlands: Wageningen.
Zinck, J. A. (1989). Physiography and soils (Lecture notes for soil students. Soil Science Division, Soil survey courses subject matter, K6). Enschede, The Netherlands: ITC.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mosleh, Z., Salehi, M.H., Jafari, A. et al. The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environ Monit Assess 188, 195 (2016). https://doi.org/10.1007/s10661-016-5204-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-016-5204-8