[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A comparative study of online consumer reviews of Apple iPhone across Amazon, Twitter and MouthShut platforms

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

The purpose of the paper is to understand if the online consumer reviews differ across the review platforms over the internet. We aim to find the features of the reviews from various platforms and ultimately create a typology of the reviews for those platforms. We apply mixed methods including both quantitative and qualitative techniques to arrive at the conclusion. We find consumers share their views on the highest number of topics in the ecommerce website. Consumers share in-depth views, but on a limited number of topics in other dedicated review platforms. Social media falls somewhere in the middle among these two platforms. While looking into the contents, we could generate themes and meta-themes from these reviews. Based on these facts, we create a typology/ontology for reviews from these platforms and map the motives of reviewers from each platform into the meta-themes identified. Managers can use our findings to boost their online review strategy according to the platform of their interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abendroth, L. J., & Heyman, J. E. (2013). Honesty is the best policy: The effects of disclosure in word-of-mouth marketing. Journal of Marketing Communications, 19(4), 245–257.

    Article  Google Scholar 

  2. Allsop, D. T., Bassett, B. R., & Hoskins, J. A. (2007). Word-of-mouth research: Principles and applications. Journal of Advertising Research, 47(4), 398–411.

    Article  Google Scholar 

  3. Babić Rosario, A., Sotgiu, F., De Valck, K., & Bijmolt, T. H. (2016). The effect of electronic word of mouth on sales: A meta-analytic review of platform, product, and metric factors. Journal of Marketing Research, 53(3), 297–318.

    Article  Google Scholar 

  4. Bagozzi, R. P. (2000). On the concept of intentional social action in consumer behavior. Journal of Consumer Research, 27(3), 388–396.

    Article  Google Scholar 

  5. Bailey, A. A. (2005). Consumer awareness and use of product review websites. Journal of Interactive Advertising, 6(1), 68–81.

    Article  Google Scholar 

  6. Belanger, F., Hiller, J. S., & Smith, W. J. (2002). Trustworthiness in electronic commerce: The role of privacy, security, and site attributes. The Journal of Strategic Information Systems, 11(3–4), 245–270.

    Article  Google Scholar 

  7. Bickart, B., & Schindler, R. M. (2001). Internet forums as influential sources of consumer information. Journal of Interactive Marketing, 15(3), 31–40.

    Article  Google Scholar 

  8. Bitner, M. J., & Obermiller, C. (1985). The elaboration likelihood model: Limitations and extensions in marketing. Advances in Consumer Research, 12(1), 420–425.

    Google Scholar 

  9. Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8.

    Article  Google Scholar 

  10. Bougie, R., Pieters, R., & Zeelenberg, M. (2003). Angry customers don’t come back, they get back: The experience and behavioral implications of anger and dissatisfaction in services. Journal of the Academy of Marketing Science, 31(4), 377–393.

    Article  Google Scholar 

  11. Bronner, F., & De Hoog, R. (2011). Vacationers and eWOM: Who posts, and why, where, and what? Journal of Travel Research, 50(1), 15–26.

    Article  Google Scholar 

  12. Campbell, C., Pitt, L. F., Parent, M., & Berthon, P. R. (2011). Understanding consumer conversations around ads in a Web 2.0 world. Journal of Advertising, 40(1), 87–102.

    Article  Google Scholar 

  13. Casaló, L. V., Flavián, C., & Guinalíu, M. (2010). Relationship quality, community promotion and brand loyalty in virtual communities: Evidence from free software communities. International Journal of Information Management, 30(4), 357–367.

    Article  Google Scholar 

  14. Chatterjee, P. (2001). Online reviews: Do consumers use them? Advances in Consumer Research, 28, 129–133.

    Google Scholar 

  15. Cheng, X., & Zhou, M. (2010). Study on effect of eWOM: A literature review and suggestions for future research. In 2010 International conference on management and service science (pp. 1–4). IEEE.

  16. Cheskin Research and Studio Archetype/Sapient. (1999). Ecommerce Trust Study. http://www.sapient.com/cheskin/.

  17. Cheung, C. M., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: A literature analysis and integrative model. Decision Support Systems, 54(1), 461–470.

    Article  Google Scholar 

  18. Cheung, C. M., Lee, M. K., & Rabjohn, N. (2008). The impact of electronic word-of-mouth: The adoption of online opinions in online customer communities. Internet Research: Electronic Networking Applications and Policy, 18(3), 229–247.

    Article  Google Scholar 

  19. Chmiel, A., Sienkiewicz, J., Thelwall, M., Paltoglou, G., Buckley, K., Kappas, A., et al. (2011). Collective emotions online and their influence on community life. PLoS ONE, 6(7), e22207.

    Article  Google Scholar 

  20. Chu, S. C., & Kim, J. (2018). The current state of knowledge on electronic word-of-mouth in advertising research. International Journal of Advertising, 37(1), 1–13.

    Article  Google Scholar 

  21. Chu, S. C., & Kim, Y. (2011). Determinants of consumer engagement in electronic word-of-mouth (eWOM) in social networking sites. International Journal of Advertising, 30(1), 47–75.

    Article  Google Scholar 

  22. ComScore Inc. (2007). Online consumer-generated reviews have significant impact on offline purchase behavior. Retrieved from: https://www.comscore.com/Insights/Press-Releases/2007/11/Online-Consumer-Reviews-Impact-Offline-Purchasing-Behavior.

  23. Cook, A. J., Moore, K., & Steel, G. D. (2004). The taking of a position: A reinterpretation of the elaboration likelihood model. Journal for the Theory of Social Behaviour, 34(4), 315–331.

    Article  Google Scholar 

  24. De Valck, K., Van Bruggen, G. H., & Wierenga, B. (2009). Virtual communities: A marketing perspective. Decision Support Systems, 47(3), 185–203.

    Article  Google Scholar 

  25. Dellarocas, C. (2003). The digitization of word of mouth: Promise and challenges of online feedback mechanisms. Management Science, 49(10), 1407–1424.

    Article  Google Scholar 

  26. Dellarocas, C., Zhang, X. M., & Awad, N. F. (2007). Exploring the value of online product reviews in forecasting sales: The case of motion pictures. Journal of Interactive Marketing, 21(4), 23–45.

    Article  Google Scholar 

  27. Denzin, N. K. (2017). The research act: A theoretical introduction to sociological methods. Piscataway: Transaction Publishers.

    Book  Google Scholar 

  28. Desjeux, D. (1996). Scales of observation a micro-sociological epistemology of social science practice. Visual Studies, 11(2), 45–55.

    Google Scholar 

  29. Eaton, D. H. (2002). Valuing information: Evidence from guitar auctions on eBay (p. 28). Murray, KY: Murray State University.

    Google Scholar 

  30. Elliott, R., & Jankel-Elliott, N. (2003). Using ethnography in strategic consumer research. Qualitative Market Research, 6(4), 215–223.

    Article  Google Scholar 

  31. Engel, J. F., Blackwell, R. D., & Miniard, P. W. (1995). Consumer behavior (8th ed.). Forth Worth: Dryden.

    Google Scholar 

  32. Erkan, I. (2015). Electronic word of mouth on Instagram: Customers’ engagements with brands in different sectors. International Journal of Management, Accounting and Economics, 2(12), 1435–1444.

    Google Scholar 

  33. Erkan, I., & Evans, C. (2018). Social media or shopping websites? The influence of eWOM on consumers’ online purchase intentions. Journal of Marketing Communications, 24(6), 617–632.

    Article  Google Scholar 

  34. Evans, M., Wedande, G., Ralston, L., & van’t Hul, S. (2001). Consumer interaction in the virtual era: some qualitative insights. Qualitative Market Research, 4(3), 150–159.

    Article  Google Scholar 

  35. Fogel, J., & Zachariah, S. (2017). Intentions to use the yelp review website and purchase behavior after reading reviews. Journal of Theoretical and Applied Electronic Commerce Research, 12(1), 53–67.

    Article  Google Scholar 

  36. Godes, D., & Mayzlin, D. (2004). Using online conversations to study word-of-mouth communication. Marketing Science, 23(4), 545–560.

    Article  Google Scholar 

  37. Goulding, C. (2003). Issues in representing the postmodern consumer. Qualitative Market Research, 6(3), 152–159.

    Article  Google Scholar 

  38. Greer, J. D. (2003). Evaluating the credibility of online information: A test of source and advertising influence. Mass Communication and Society, 6(1), 11–28.

    Article  Google Scholar 

  39. Gupta, P., & Harris, J. (2010). How e-WOM recommendations influence product consideration and quality of choice: A motivation to process information perspective. Journal of Business Research, 63(9–10), 1041–1049.

    Article  Google Scholar 

  40. He, W., Xu, G., Kim, Y., Dwivedi, R., Zhang, J., & Jeong, S. R. (2016). Competitive intelligence in social media Twitter: iPhone 6 vs. Galaxy S5. Online Information Review, 40(1), 42–61.

    Article  Google Scholar 

  41. Heider, F. (1946). Attitudes and cognitive organization. The Journal of Psychology, 21(1), 107–112.

    Article  Google Scholar 

  42. Heider, F. (1958). The psychology of interpersonal relations. New York: Wiley.

    Book  Google Scholar 

  43. Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the internet? Journal of Interactive Marketing, 18(1), 38–52.

    Article  Google Scholar 

  44. Hennig-Thurau, T., Walsh, G., & Walsh, G. (2003). Electronic word-of-mouth: Motives for and consequences of reading customer articulations on the Internet. International Journal of Electronic Commerce, 8(2), 51–74.

    Article  Google Scholar 

  45. Hong, T. (2006). The influence of structural and message features on Web site credibility. Journal of the American Society for Information Science and Technology, 57(1), 114–127.

    Article  Google Scholar 

  46. Hovland, C. I. (1948). Psychology of the communication process. In W. Schramm (Ed.), Communications in modern society (pp. 58–65). Urbana: Univ. Ill. Press

    Google Scholar 

  47. Hu, N., Liu, L., & Zhang, J. J. (2008). Do online reviews affect product sales? The role of reviewer characteristics and temporal effects. Information Technology and Management, 9(3), 201–214.

    Article  Google Scholar 

  48. Hung, K. H., & Li, S. Y. (2007). The influence of eWOM on virtual consumer communities: Social capital, consumer learning, and behavioral outcomes. Journal of Advertising Research, 47(4), 485–495.

    Article  Google Scholar 

  49. Kaiser, C., & Bodendorf, F. (2012). Mining consumer dialog in online forums. Internet Research: Electronic Networking Applications and Policy, 22(3), 275–297.

    Article  Google Scholar 

  50. Kawaf, F., & Istanbulluoglu, D. (2019). Online fashion shopping paradox: The role of customer reviews and facebook marketing. Journal of Retailing and Consumer Services, 48, 144–153.

    Article  Google Scholar 

  51. Khammash, M., & Griffiths, G. H. (2011). ‘Arrivederci CIAO. com, Buongiorno Bing. com’—Electronic word-of-mouth (eWOM), antecedences and consequences. International Journal of Information Management, 31(1), 82–87.

    Article  Google Scholar 

  52. Kiecker, P., & Cowles, D. (2002). Interpersonal communication and personal influence on the Internet: A framework for examining online word-of-mouth. Journal of Euromarketing, 11(2), 71–88.

    Article  Google Scholar 

  53. Kietzmann, J. H., Hermkens, K., McCarthy, I. P., & Silvestre, B. S. (2011). Social media? Get serious! Understanding the functional building blocks of social media. Business Horizons, 54(3), 241–251.

    Article  Google Scholar 

  54. Kim, J., Jin, B., & Swinney, J. L. (2009). The role of etail quality, e-satisfaction and e-trust in online loyalty development process. Journal of Retailing and Consumer Services, 16(4), 239–247.

    Article  Google Scholar 

  55. King, R. A., Racherla, P., & Bush, V. D. (2014). What we know and don’t know about online word-of-mouth: A review and synthesis of the literature. Journal of Interactive Marketing, 28(3), 167–183.

    Article  Google Scholar 

  56. Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2006). Handling imbalanced datasets: A review. GESTS International Transactions on Computer Science and Engineering, 30(1), 25–36.

    Google Scholar 

  57. Kozinets, R. V. (2002). The field behind the screen: Using netnography for marketing research in online communities. Journal of Marketing Research, 39(1), 61–72.

    Article  Google Scholar 

  58. Kozinets, R. V., Dolbec, P.-Y., & Earley, A. (2014). Netnographic analysis: Understanding culture through social media data. In U. Flick (Ed.), Sage handbook of qualitative data analysis (pp. 262–276). London: Sage.

    Chapter  Google Scholar 

  59. Ku, Y. C., Wei, C. P., & Hsiao, H. W. (2012). To whom should I listen? Finding reputable reviewers in opinion-sharing communities. Decision Support Systems, 53(3), 534–542.

    Article  Google Scholar 

  60. Kulmala, M., Mesiranta, N., & Tuominen, P. (2013). Organic and amplified eWOM in consumer fashion blogs. Journal of Fashion Marketing and Management, 17(1), 20–37.

    Article  Google Scholar 

  61. Lee, A. J., Yang, F. C., Chen, C. H., Wang, C. S., & Sun, C. Y. (2016). Mining perceptual maps from consumer reviews. Decision Support Systems, 82, 12–25.

    Article  Google Scholar 

  62. Lee, M., & Youn, S. (2009). Electronic word of mouth (eWOM) How eWom platforms influence consumer product judgement. International Journal of Advertising, 28(3), 473–499.

    Article  Google Scholar 

  63. Lee, Z. W., Cheung, C. M., & Thadani, D. R. (2012). An investigation into the problematic use of Facebook. In 2012 45th Hawaii international conference on system sciences (pp. 1768–1776). IEEE.

  64. Li, C. Y. (2013). Persuasive messages on information system acceptance: A theoretical extension of elaboration likelihood model and social influence theory. Computers in Human Behavior, 29(1), 264–275.

    Article  Google Scholar 

  65. Lien, N.-H. (2001). Elaboration likelihood model in consumer research: A review. Proceedings of the National Science Council Part C: Humanities and Social Sciences, 11(4), 301–310.

    Google Scholar 

  66. Linaza, M. T., Lölhöffel, F., Garcia, A., Lamsfus, C., Alzua-Sorzabal, A., & Lazkano, A. (2008). Mash-up applications for small destination management organizations websites. In ENTER (pp. 130–140).

  67. Lindebaum, D., & Jordan, P. J. (2012). Positive emotions, negative emotions, or utility of discrete emotions? Journal of Organizational Behavior, 33(7), 1027–1030.

    Article  Google Scholar 

  68. Litvin, S. W., Goldsmith, R. E., & Pan, B. (2008). Electronic word-of-mouth in hospitality and tourism management. Tourism Management, 29(3), 458–468.

    Article  Google Scholar 

  69. Liu, J., Rau, P. L. P., & Wendler, N. (2015). Trust and online information-sharing in close relationships: A cross-cultural perspective. Behaviour and Information Technology, 34(4), 363–374.

    Article  Google Scholar 

  70. Liu, Y. (2006). Word of mouth for movies: Its dynamics and impact on box office revenue. Journal of Marketing, 70(3), 74–89.

    Article  Google Scholar 

  71. Liu, Z., & Park, S. (2015). What makes a useful online review? Implication for travel product websites. Tourism Management, 47, 140–151.

    Article  Google Scholar 

  72. Maeyer, P. D. (2012). Impact of online consumer reviews on sales and price strategies: A review and directions for future research. Journal of Product and Brand Management, 21(2), 132–139.

    Article  Google Scholar 

  73. Manek, A. S., Shenoy, P. D., Mohan, M. C., & Venugopal, K. R. (2017). Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier. World Wide Web, 20(2), 135–154.

    Article  Google Scholar 

  74. Matute, J., Polo-Redondo, Y., & Utrillas, A. (2016). The influence of EWOM characteristics on online repurchase intention. Online Information Review, 40(7), 1090–1110.

    Article  Google Scholar 

  75. McGregor, J. (2020). Apple’s iPhone XR success is good news for everyone. Forbes, Retrieved from https://www.forbes.com.

  76. McKenna, K. Y., & Bargh, J. A. (2000). Plan 9 from cyberspace: The implications of the Internet for personality and social psychology. Personality and Social Psychology Review, 4(1), 57–75.

    Article  Google Scholar 

  77. McKinney, V., Yoon, K., & Zahedi, F. M. (2002). The measurement of web-customer satisfaction: An expectation and disconfirmation approach. Information Systems Research, 13(3), 296–315.

    Article  Google Scholar 

  78. Midha, V. (2012). Impact of consumer empowerment on online trust: An examination across genders. Decision Support Systems, 54(1), 198–205.

    Article  Google Scholar 

  79. MouthShut. (2013). MouthShut.com approaches Supreme Court to safeguard freedom of expression. https://www.mouthshut.com/freedom-of-expression.

  80. MouthShut. (2020). MouthShut.com. https://www.mouthshut.com/help/aboutus.php.

  81. Mudambi, S. M., & Schuff, D. (2010). Research note: What makes a helpful online review? A study of customer reviews on Amazon. com. MIS Quarterly, 34(1), 185–200.

    Article  Google Scholar 

  82. Munar, A. M., & Jacobsen, J. K. S. (2013). Trust and involvement in tourism social media and web-based travel information sources. Scandinavian Journal of Hospitality and Tourism, 13(1), 1–19.

    Article  Google Scholar 

  83. Nancarrow, C., Barker, A., & Wright, L. T. (2001). Engaging the right mindset in qualitative marketing research. Marketing Intelligence and Planning., 19(4), 236–243.

    Article  Google Scholar 

  84. Newcomb, T. M. (1953). An approach to the study of communicative acts. Psychological Review, 60(6), 393.

    Article  Google Scholar 

  85. Okazaki, S. (2009). Social influence model and electronic word of mouth: PC versus mobile internet. International Journal of Advertising, 28(3), 439–472.

    Article  Google Scholar 

  86. Park, D. H., & Kim, S. (2008). The effects of consumer knowledge on message processing of electronic word-of-mouth via online consumer reviews. Electronic Commerce Research and Applications, 7(4), 399–410.

    Article  Google Scholar 

  87. Park, H., Xiang, Z., Josiam, B., & Kim, H. (2014). Personal profile information as cues of credibility in online travel reviews. Anatolia, 25(1), 13–23.

    Article  Google Scholar 

  88. Petrescu, M., O’Leary, K., Goldring, D., & Mrad, S. B. (2018). Incentivized reviews: Promising the moon for a few stars. Journal of Retailing and Consumer Services, 41, 288–295.

    Article  Google Scholar 

  89. Petty, R. E., & Cacioppo, J. T. (1986). The elaboration likelihood model of persuasion. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 19, pp. 123–205). New York: Academic Press.

    Google Scholar 

  90. Qi, J., Zhang, Z., Jeon, S., & Zhou, Y. (2016). Mining customer requirements from online reviews: A product improvement perspective. Information & Management, 53(8), 951–963.

    Article  Google Scholar 

  91. Qu, Z., Zhang, H., & Li, H. (2008). Determinants of online merchant rating: Content analysis of consumer comments about Yahoo merchants. Decision Support Systems, 46(1), 440–449.

    Article  Google Scholar 

  92. Reed, A. (2002). Social identity as a useful perspective for self-concept–based consumer research. Psychology and Marketing, 19(3), 235–266.

    Article  Google Scholar 

  93. Roy, G., Datta, B., & Basu, R. (2017). Effect of eWOM valence on online retail sales. Global Business Review, 18(1), 198–209.

    Article  Google Scholar 

  94. Senecal, S., & Nantel, J. (2004). The influence of online product recommendations on consumers’ online choices. Journal of Retailing, 80(2), 159–169.

    Article  Google Scholar 

  95. Siau, K., Erickson, J., & Nah, F. F. H. (2010). Effects of national culture on types of knowledge sharing in virtual communities. IEEE Transactions on Professional Communication, 53(3), 278–292.

    Article  Google Scholar 

  96. Solis, B. (2010). Engage: The complete guide for brands and businesses to build, cultivate, and measure success in the new web. Hoboken: Wiley.

    Google Scholar 

  97. Solomon, M. B. (1996). Targeting trendsetters. Marketing Research, 8(2), 9.

    Google Scholar 

  98. Sotiriadis, M. D., & Van Zyl, C. (2013). Electronic word-of-mouth and online reviews in tourism services: The use of twitter by tourists. Electronic Commerce Research, 13(1), 103–124.

    Article  Google Scholar 

  99. Subramani, M. R., & Rajagopalan, B. (2003). Knowledge-sharing and influence in online social networks via viral marketing. Communications of the ACM, 46(12), 300–307.

    Article  Google Scholar 

  100. Sundaram, D. S., Mitra, K., & Webster, C. (1998). Word-of-mouth communications: A motivational analysis. Advances in Consumer Research, 25, 527–531.

    Google Scholar 

  101. Tajfel, H., Turner, J. C., Austin, W. G., & Worchel, S. (1979). An integrative theory of intergroup conflict. Organizational identity: A reader, 56, 65.

    Google Scholar 

  102. Teng, S., Khong, K. W., & Goh, W. W. (2014). Conceptualizing persuasive messages using ELM in social media. Journal of Internet Commerce, 13(1), 65–87.

    Article  Google Scholar 

  103. Thibaut, J. W. (2017). The social psychology of groups. Abingdon: Routledge.

    Book  Google Scholar 

  104. Tong, Y., Wang, X., Tan, C. H., & Teo, H. H. (2013). An empirical study of information contribution to online feedback systems: A motivation perspective. Information & Management, 50(7), 562–570.

    Article  Google Scholar 

  105. Tormala, Z. L., Briñol, P., & Petty, R. E. (2006). When credibility attacks: The reverse impact of source credibility on persuasion. Journal of Experimental Social Psychology, 42(5), 684–691.

    Article  Google Scholar 

  106. Trampe, D., Stapel, D. A., Siero, F. W., & Mulder, H. (2010). Beauty as a tool: The effect of model attractiveness, product relevance, and elaboration likelihood on advertising effectiveness. Psychology and Marketing, 27(12), 1101–1121.

    Article  Google Scholar 

  107. Tsao, W. C., & Hsieh, M. T. (2015). eWOM persuasiveness: Do eWOM platforms and product type matter? Electronic Commerce Research, 15(4), 509–541.

    Article  Google Scholar 

  108. Tsao, W. C., Hsieh, M. T., Shih, L. W., & Lin, T. M. (2015). Compliance with eWOM: The influence of hotel reviews on booking intention from the perspective of consumer conformity. International Journal of Hospitality Management, 46, 99–111.

    Article  Google Scholar 

  109. Van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. arXiv preprint arXiv:1109.2058.

  110. von Scheve, C. (2012). The social calibration of emotion expression: An affective basis of micro-social order. Sociological Theory, 30(1), 1–14.

    Article  Google Scholar 

  111. Wang, J. C., & Chang, C. H. (2013). How online social ties and product-related risks influence purchase intentions: A Facebook experiment. Electronic Commerce Research and Applications, 12(5), 337–346.

    Article  Google Scholar 

  112. Westbrook, R. A. (1987). Product/consumption-based affective responses and postpurchase processes. Journal of Marketing Research, 24(3), 258–270.

    Article  Google Scholar 

  113. Wood, C. (2020). Apple’s budget iPhone XR was the most popular phone in the world in 2019, figures suggest. Business Insider, Retrieved from https://www.businessinsider.in.

  114. Xie, K. L., Chen, C., & Wu, S. (2016). Online consumer review factors affecting offline hotel popularity: Evidence from tripadvisor. Journal of Travel and Tourism Marketing, 33(2), 211–223.

    Article  Google Scholar 

  115. Xue, F., & Phelps, J. E. (2004). Internet-facilitated consumer-to-consumer communication: The moderating role of receiver characteristics. International Journal of Internet Marketing and Advertising, 1(2), 121–136.

    Article  Google Scholar 

  116. Yeap, J. A., Ignatius, J., & Ramayah, T. (2014). Determining consumers’ most preferred eWOM platform for movie reviews: A fuzzy analytic hierarchy process approach. Computers in Human Behavior, 31, 250–258.

    Article  Google Scholar 

  117. Yoo, K. H., & Gretzel, U. (2008). What motivates consumers to write online travel reviews? Information Technology and Tourism, 10(4), 283–295.

    Article  Google Scholar 

  118. Zhao, K., Stylianou, A. C., & Zheng, Y. (2018). Sources and impacts of social influence from online anonymous user reviews. Information & Management, 55(1), 16–30.

    Article  Google Scholar 

  119. Zhou, W., & Duan, W. (2015). An empirical study of how third-party websites influence the feedback mechanism between online word-of-mouth and retail sales. Decision Support Systems, 76, 14–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapnajit Chakraborti.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. A
figure a

Network visualization for reviews from Amazon.com (AMZ)

Fig. B
figure b

Network visualization for reviews from MouthShut.com (MTS)

Fig. C
figure c

Network visualization for reviews from Twitter (TWT)

See Table 7.

Table 7 Example reviews from TWT, MTS and AMZ

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Chakraborti, S. A comparative study of online consumer reviews of Apple iPhone across Amazon, Twitter and MouthShut platforms. Electron Commer Res 22, 925–950 (2022). https://doi.org/10.1007/s10660-020-09429-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-020-09429-w

Keywords

Navigation