[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Assessing synergism of combined applications of Trichoderma harzianum and Pseudomonas fluorescens to control blast and bacterial leaf blight of rice

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Combined application of biocontrol agents (BCAs) have been used to exploit their synergistic potential. But the analysis of additive, synergistic and antagonistic effects of BCAs has rarely been explored for the biocontrol of plant diseases. This study was conducted to evaluate in vitro and in vivo biocontrol potential of the combined application of Trichoderma harzianum strain Th3 and Pseudomonas fluorescens strain RRb11, and the fungicide carbendazim against the rice blast (RB) pathogen, Magnaporthe oryzae, and the bacterial leaf blight (BLB) pathogen, Xanthomonas oryzae pv. oryzae. Combined application of T. harzianum Th3 and P. fluorescens RRb11 synergistically reduced severity of RB by 69.5% in comparison to the untreated control, displaying a synergy factor (SF) of 1.29. P. fluorescens RRb 11 alone and in combination with T. harzianum Th3 and the mixture of T. harzianum Th3 + carbendazim was antagonistic (SF = 0.71 and 0.45, respectively). The combined application of T. harzianum Th3 and P. fluorescens RRb 11 also enhanced several rice plant growth and yield parameters. Additive, synergistic or antagonistic effects among the two BCAs were assessed by applying the numerical hypothesis of ‘Bliss Independence’ which suggested that the combined application of the two BCAs was synergistic in reducing RB but antagonistic with respect to BLB. Out of the six combined application interactions for both the diseases only one interaction (T. harzianum Th3 and P. fluorescens RRb11) was synergistic against RB, which suggested that synergism is a rare event in combined use of BCAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alabouvette, C., Lemanceau, P., & Steinberg, C. (1996). Biological control of fusarium wilds: Opportunities for developing a commercial product. In R. Hall (Ed.), Principles and practice of managing soilborne plant pathogens (pp. 192–212). St Paul: APS Press.

    Google Scholar 

  • Alizadeh, H., Behboudi, K., Ahmadzadeh, M., Javan-Nikkhah, M., Zamioudis, C., Pieterse, C. M. J., & Bakker, P. A. M. (2013). Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biological Control, 65, 14–23.

    Article  Google Scholar 

  • Becquer, C. J., Lazarovits, G., & Lalin, I. (2013). In vitro ineractions between Trichoderma harzianum and plant growth promoter rhizosphere bacteria. Cuban Journal of Agricultural Science, 47(1), 97–103.

    Google Scholar 

  • Chemeltorit, P. P., Mutaqin, K. H., & Widodo, W. (2017). Combining Trichoderma hamatum THSW13 and Pseudomonas aeruginosa BJ10-86: a synergistic chilli pepper seed treatment for Phytophthora capsici infested soil. European Journal of Plant Pathology, 147, 157–166.

    Article  Google Scholar 

  • Chowdappa, P., Kumar, S. P. M., Lakshmi, M. J., & Upreti, K. K. (2013). Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control, 65, 109–117.

    Article  Google Scholar 

  • Contreras Cornejo, H. A., Ortiz Castro, R., & Lopez Bucio, J. (2013). Promotion of plant growth and the induction of systemic defence by Trichoderma: Physiology, genetics and gene expression. In P. K. Mukherjee (Ed.), Trichoderma biology and applications (pp. 175–196). London: CABI.

    Google Scholar 

  • Doni, F., Isahak, A., Zain, C. R. C. M., & Yusoff, W. M. W. (2014). Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express, 4, 45. https://doi.org/10.1186/s13568-014-0045-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey, S. C., Singh, V., Priyanka, K., Upadhyay, B. K., & Singh, B. (2015). Combined application of fungal and bacterial bio-agents, together with fungicide and Mesorhizobium for integrated management of fusarium wilt of chickpea. Biocontrol, 60(3), 413–424.

    Article  CAS  Google Scholar 

  • Howell, C. R. (1998). The role of antibiosis in biocontrol. In G. E., Harman & C. P. Kubicek (Eds.), Trichoderma and Gliocladium Vol 2, (pp. 173–184). London: Taylor and Francies.

  • Hubbard, J. P., Harman, G. E., & Hadar, Y. (1983). Effect of soilborne Pseudomonas spp. on the biological control agent, Trichoderma hamatum, on pea seeds. Phytopathology, 73, 655–659.

    Article  Google Scholar 

  • IRRI. (1996). Standard evaluation system (SES) scale for leaf blast. In Plant Pathology Technical Program. ICAR-Indian Institute of Rice Research. pp. 5.

  • Jambhulkar, P. P., & Sharma, P. (2014). Development of bioformulation and delivery system of Pseudomonas fluorescens against bacterial leaf blight of rice (Xanthomonas oryzae pv. oryzae). Journal of Environmental Biology, 35(5), 843–849.

    CAS  PubMed  Google Scholar 

  • Janousek, C. N., Lorber, J. D., & Gubler, W. D. (2009). Combination and rotation of bacterial antagonists to control powdery mildew on pumpkin. Journal of Plant Disease Protection, 116, 260–262.

    Article  Google Scholar 

  • Jetiyanon, K., Fowler, W. D., & Kloepper, J. W. (2003). Broad spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Disease, 87, 1390–1394.

    Article  PubMed  Google Scholar 

  • John, R. P., Tyagi, R. D., Prévost, D., Brar, S. K., Pouleur, S., & Surampalli, R. Y. (2010). Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. Sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Protection, 29, 1452–1459.

    Article  Google Scholar 

  • Kamal, A. M., Abo-Elyousr, A. M., Hashem, M., & Ali, E. H. (2009). Integrated control of cotton root rot disease by mixing fungal biocontrol agents and resistance inducers. Crop Protection, 28, 295–301.

    Article  CAS  Google Scholar 

  • Larkin, R. P., Roberts, D. P., & Gracia-Garza, J. A. (1998). In Hutson, D., Miyamoto, J. (Eds.), Fungicidal activity – Chemical and biological approaches to plant protection, (pp. 141–191). New York: Wiley.

  • Le Floch, G., Vallance, J., Benhamou, N., & Rey, P. (2009). Combining the oomycete Pythium oligandrum with two other antagonistic fungi: Root relationships and tomato grey mold biocontrol. Biological Control, 50, 288–298.

    Article  Google Scholar 

  • Manjula, K., Krishna Kishore, G., Girish, A. G., & Singh, S. D. (2004). Combined application of Pseudomonas fluorescens and Trichoderma viride has an improved biocontrol activity against stem rot in groundnut. Plant Pathology Journal, 20(1), 75–80.

    Article  Google Scholar 

  • McKinney, H. N. (1923). Influence of soil temperature and moisture on infection of wheat seedlings by Helmenthosporium sativum. Journal of Agricultural Research, 26, 195–207.

    Google Scholar 

  • Meena, C. B., & Gopalakrishnan, J. (2013). Integrated management of bacterial blight of rice using rhizobacteria and botanicals. Environmental Ecology, 31(3), 1390–1395.

    Google Scholar 

  • Mohammadinejhad-Babandeh, S. N., Doroodian, H. R., & Besharati, H. (2012). Effect of bio-bacterial (Azetobacter, Azorhizobioum, Azospirilium) on yield and yield components of rice in BandarAnzali, North of Iran. Research Journal of Biological Science, 7, 244–249.

    Article  Google Scholar 

  • Neumann, B., & Laing, M. (2006). Trichoderma: An ally in the quest for soil system sustainability. In N. Uphoff, E. Fernandes, H. Herren, O. Husson, M. Laing, C. Palm, J. Pretty, P. Sanchez, N. Sanginga, & J. Thies (Eds.), Biological approaches to sustainable soil system (pp. 491–500). FL: Taylor & Francis, Boca Raton.

    Chapter  Google Scholar 

  • Otto-Hanson, L. K., Grabau, Z., Rosen, C., Salomon, C. E., & Kinkel, L. L. (2013). Pathogen variation and urea influence selection and success of Streptomyces mixtures in biological control. Phytopathology, 103, 34–42.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, P., & Maheshwari, D. K. (2007). Bioformulation of Burkholderia sp. MSSP with a multispecies consortium for growth promotion of Cajanus cajan. Canadian Journal of Microbiology, 53(2), 213–222.

    Article  CAS  PubMed  Google Scholar 

  • Pandya, R., Tripathi, R. S., & Kaushik, S. K. (2011). Upland rice in Rajasthan. In R. K. Singh, C. V. Singh, N. P. Mandal, & M. S. Anantha (Eds.), Upland rice in India (pp. 301–320). New Delhi: Scientific Publishers.

    Google Scholar 

  • Prakash, O M. (2013). Study on population dynamics and effect of pesticides on Pseudomonas fluorescens and Trichoderma harzianum used as antagonists against bacterial leaf blight of rice in IPM system. Ph.D. Thesis IARI, New Delhi.

  • Raman, J. (2012). Response of Azotobacter, Pseudomonas and Trichoderma on growth of apple seedling. International Conference on Biological and Life Sciences IPCBEE, IACSIT Press, Singapore.

  • Reino, J. L., Guerrero, R. F., Galan, R. H., & Collado, I. G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7, 89–123.

    Article  CAS  Google Scholar 

  • Roberts, D. P., Lohrke, S. M., Meyer, S. L. F., Buyer, J. S., Bowers, J. H., Baker, C. J., Li, W., de Souza, J. T., Lewis, J. A., & Chung, S. (2005). Biocontrol agents applied individually and in combination for suppression of soil borne diseases of cucumber. Crop Protection, 24, 141–155.

    Article  Google Scholar 

  • Saju, K. A., Anandaraj, M., & Sarma, Y. R. (2003). Evaluation of Trichoderma sp. and Pseudomonas sp. for suppression of Phytophthora capsici infecting black pepper. In M. S. Reddy, M. Anandaraj, S. J. Eapen, Y. R. Sarma, & J. W. Kloepper (Eds.), Sixth international workshop on plant growth promoting Rhizobacteria, abstracts and short papers, 5–10 October 2003 (pp. 52–58). Calicut: Indian Institute of Spices Research, Calicut.

    Google Scholar 

  • Sandheep, A. R., Asok, A. K., & Jisha, M. S. (2013). Combined inoculation of Pseudomonas fluorescens and Trichoderma harzianum for enhancing plant growth of vanilla (Vanilla planifolia). Pakistan Journal Biological Science, 16(2), 580–584.

    CAS  Google Scholar 

  • Sharma, S. K., & Dohroo, N. P. (1991). Post harvest management of rhizome rot (Fusarium oxysporum f. Sp. zingiber, Trujillo) of ginger through chemical and antagonists. Indian Cocoa Arecanut Spices Journal, 14(4), 150–152.

    Google Scholar 

  • Sharma, P., & Dureja, P. (2004). Evaluation of Trichoderma harzianum and Trichoderma viride isolates at BCA pathogen crop Interface. Journal of Mycology & Plant Pathology, 34(1), 47–55.

    CAS  Google Scholar 

  • Sharma, K., Kumar, M., & Misra, R. M. (2009). Morphological, biochemical and molecular characterization of Trichoderma harzianum isolates for their efficacy as biocontrol agents. Journal of Phytopatholology, 157, 51–56.

    Article  CAS  Google Scholar 

  • Sharma, P., Sharma, M., & Srivastava, M. (2014). Heterologous expression and characterization of purified endochitinase (ech-42) isolated from Trichoderma harzianum. African Journal of Biotechnology, 13(21), 2159–2165.

    Article  CAS  Google Scholar 

  • Singh, S. P., & Singh, H. B. (2012). Effect of consortium of Trichoderma harzianum isolates on growth attributes and Sclerotinia sclerotiorum rot of brinjal. Vegetable Science, 39(2), 144–148.

    Google Scholar 

  • Sivakumar, D., Wijeratnam, W. R. S., Wijesundera, R. L. C., Marikar, F. M. T., & Abeyesekere, M. (2000). Antagonistic effect of Trichoderma harzianum on post-harvest pathogens of Rambutan (Naphelium lappaceum). Phytoparasitica, 28, 240–247.

    Article  Google Scholar 

  • Xu, X. M., & Jeger, M. J. (2013). Theoretical modelling suggests that synergy may result from combined use of two biocontrol agents for controlling foliar pathogens under spatial heterogenous conditions. Phytopathology, 103, 768–775.

    Article  PubMed  Google Scholar 

  • Xu, X. M., Robinson, J. D., Jeger, M., & Jeffries, P. (2010). Using combinations of biocontrol agents to control Botrytis cinerea on strawberry leaves under fluctuating temperatures. Biocontrol Science and Technology, 20, 359–373.

    Article  Google Scholar 

  • Xu, X. M., Jeffries, P., Pautasso, M., & Jeger, M. J. (2011a). Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology, 101, 1024–1031.

    Article  CAS  Google Scholar 

  • Xu, X. M., Jeffries, P., Pautasso, M., & Jeger, M. J. (2011b). A numerical study of combined use of two biocontrol agents with different biocontrol mechanisms in controlling foliar pathogens. Phytopathology, 101, 1032–1044.

    Article  PubMed  Google Scholar 

  • Zegeye, E. D., Santhanam, A., Gorfu, D., Tessera, M., & Kassa, B. (2011). Biocontrol activity of Trichoderma viride and Pseudomonas fluorescens against Phytophthora infestans under greenhouse conditions. Journal of Agriculture Technology, 7(6), 1589–1602.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Zonal Director of Research, Agricultural Research Station, Banswara, for providing necessary facilities for the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant P. Jambhulkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Involvement of human participants and /or animals

The present research did not involve or practiced on any human or animals.

Informed consent

Authors are ready to provide sufficient detailed information of the present study to the readers for future collaboration and participation in such kind of research with us.

Electronic supplementary material

ESM 1

(DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jambhulkar, P.P., Sharma, P., Manokaran, R. et al. Assessing synergism of combined applications of Trichoderma harzianum and Pseudomonas fluorescens to control blast and bacterial leaf blight of rice. Eur J Plant Pathol 152, 747–757 (2018). https://doi.org/10.1007/s10658-018-1519-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1519-3

Keywords

Navigation