[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Computer-Based Scaffolding Targeting Individual Versus Groups in Problem-Centered Instruction for STEM Education: Meta-analysis

  • Meta-Analysis
  • Published:
Educational Psychology Review Aims and scope Submit manuscript

Abstract

Computer-based scaffolding (CBS) has been regarded as an effective way to help individual students complete and gain skill at completing complex tasks beyond their current ability level. Previous meta-analyses also have demonstrated that CBS for collaborative learning leads to positive cognitive outcomes in problem-centered instruction for STEM education. However, while separate synthesis efforts have been conducted on CBS and collaboration guidance, little work has examined the intersection of these approaches. This study addresses this gap by examining the extent to which the effect of CBS is moderated by the group size in which students work, which type of CBS intervention was used in groups or individually, and whether CBS includes supports for both individual and group works or only individual learning. Results from 145 studies indicate that CBS leads to statistically significant cognitive learning effects when students solve problems individually, as well as working in pairs, triads, and small groups. Moderator analyses indicated that (a) effect sizes are higher when students worked in pairs than when they worked in triads, small groups, or individually; (b) the effect size of metacognitive scaffolding on group activity is higher than other types of scaffolding intervention; and (c) the effect size is higher for groups when scaffolding was present but collaboration support was absent. These results suggest that elaborated design and integration of CBS and collaboration guidance are considered to maximize students’ learning in problem-centered instruction within STEM education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ardac, D., & Akaygun, S. (2004). Effectiveness of multimedia-based instruction that emphasizes molecular representations on students’ understanding of chemical change. Journal of Research in Science Teaching, 41, 317–337. https://doi.org/10.1002/tea.20005.

    Article  Google Scholar 

  • Azmitia, M. (1988). Peer interaction and problem solving: When are two heads better than one? Child Development, 59(1), 87–96. https://doi.org/10.2307/1130391.

    Article  Google Scholar 

  • Baines, E., Blatchford, P., & Kutnick, P. (2003). Changes in grouping practices over primary and secondary school. International Journal of Educational Research, 39(1–2), 9–34.

    Article  Google Scholar 

  • Baker, M. J. (2015). Collaboration in collaborative learning. Interaction Studies, 16(3), 451–473.

    Article  Google Scholar 

  • Barrows, H. S. (1992). The tutorial process (2nd ed.). Springfield, IL: Southern Illinois University School of Medicine.

    Google Scholar 

  • Belland, B. R. (2014). Scaffolding: Definition, current debates, and future directions. In J. Spector, M. Merrill, J. Elen, & M. Bishop (Eds.), Handbook of research on educational communications and technology. New York, NY: Springer.

    Google Scholar 

  • Belland, B. R. (2008). Supporting middle school students’ construction of evidence-based arguments: Impact of and student interactions with computerbased argumentation scaffolds (PhD dissertation). Purdue University, West Lafayette, IN, USA. Retrieved from ProQuest Dissertations & Theses Full Text. (publication number 304502316).

  • Belland, B. R., Kim, C., & Hannafin, M. J. (2013a). A framework for designing scaffolds that improve motivation and cognition. Educational Psychologist, 48(4), 243–270.

    Article  Google Scholar 

  • Belland, B. R., & Drake, J. (2013b). Toward a framework on how affordances and motives can drive different uses of scaffolds: Theory, evidence, and design implications. Educational Technology Research and Development, 61(6), 903-925.

  • Belland, B. R., Walker, A. E., Kim, N. J., & Lifler, M. R. (2014). A preliminary meta-analysis on the influence of scaffolding characteristics and study and assessment quality on cognitive outcomes in STEM education. In proceedings of the annual meeting of the cognitive science society (Vol. 36, no. 36).

  • Belland, B. R., Gu, J., Kim, N. J., & Turner, D. J. (2016). An ethnomethodological perspective on how middle school students addressed a water quality problem. Educational Technology Research and Development, 64(6), 1135–1161.

    Article  Google Scholar 

  • Belland, B. R., Walker, A. E., & Kim, N. J. (2017a). A Bayesian network meta-analysis to synthesize the influence of contexts of scaffolding use on cognitive outcomes in STEM education. Review of Educational Research, 87(6), 1042–1081. https://doi.org/10.3102/0034654317723009.

    Article  Google Scholar 

  • Belland, B. R., Walker, A. E., Kim, N. J., & Lefler, M. (2017b). Synthesizing results from empirical research on computer-based scaffolding in STEM education: A meta-analysis. Review of Educational Research, 87(2), 309–344. https://doi.org/10.3102/0034654316670999.

    Article  Google Scholar 

  • Bell, S. (2010). Project-based learning for the 21st century: Skills for the future. The clearing house, 83(2), 39–43.

    Article  Google Scholar 

  • Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy & Practice, 5(1), 7–74. https://doi.org/10.1080/0969595980050102.

    Article  Google Scholar 

  • Borenstein, M., Hedges, L. V., Higgins, J., & Rothstein, H. (2009). Introduction to meta-analysis. Chichester: John Wiley & Sons.

    Book  Google Scholar 

  • Bulu, S. T., & Pedersen, S. (2010). Scaffolding middle school students’ content knowledge and ill-structured problem solving in a problem-based hypermedia learning environment. Educational Technology Research and Development, 58(5), 507–529.

    Article  Google Scholar 

  • Cahill, C., Kuhn, A., Schmoll, S., Pompe, A., & Quintana, C. (2010). Zydeco: Using mobile and web technologies to support seamless inquiry between museum and school contexts. In Proceedings of the 9th international conference on interaction design and children (pp. 174–177). New York: ACM. https://doi.org/10.1145/1810543.1810564.

    Chapter  Google Scholar 

  • Casner-Lotto, J., & Barrington, L. (2006). Are they really ready to work? Employers’ perspectives on the basic knowledge and applied skills of new entrants to the 21st century US workforce (p. 64). Washington, DC, USA: Partnership for 21st century skills.

  • Chang, H., & Linn, M. (2013). Scaffolding learning from molecular visualizations. Journal of Research in Science Teaching, 50(7), 858–886. https://doi.org/10.1002/tea.21089.

    Article  Google Scholar 

  • Chen, C. H., & Law, V. (2016). Scaffolding individual and collaborative game-based learning in learning performance and intrinsic motivation. Computers in Human Behavior, 55, 1201–1212.

    Article  Google Scholar 

  • Chen, J., Wang, M., Kirschner, P. A., & Tsai, C.-C. (2018). The role of collaboration, computer use, learning environments, and supporting strategies in CSCL: A meta-analysis. Review of Educational Research, 88(6), 799–843. https://doi.org/10.3102/0034654318791584.

    Article  Google Scholar 

  • Chinn, C. A., Duncan, R. G., Dianovsky, M., & Rinehart, R. (2013). Promoting conceptual change through inquiry. In International handbook of research on conceptual change (pp. 539-559).

  • Cummings, J. N., Kiesler, S., Bosagh Zadeh, R., & Balakrishnan, A. D. (2013). Group heterogeneity increases the risks of large group size: A longitudinal study of productivity in research groups. Psychological Science, 24(6), 880–890. https://doi.org/10.1177/0956797612463082.

    Article  Google Scholar 

  • Davis, E., & Linn, M. (2000). Scaffolding students’ knowledge integration: Prompts for reflection in KIE. International Journal of Science Education, 22(8), 819–837.

    Article  Google Scholar 

  • Deci, E. L., & Ryan, R. M. (1987). The support of autonomy and the control of behavior. Journal of Personality and Social Psychology, 53(6), 1024–1037.

    Article  Google Scholar 

  • Del Marie Rysavy, S., & Sales, G. C. (1991). Cooperative learning in computer-based instruction. Educational Technology Research and Development, 39(2), 70–79.

    Article  Google Scholar 

  • Deters, K. M. (2008). Investigating a computerized scaffolding software for student designed science investigations (PhD Dissertation). University of Nebraska, Lincoln. Retrieved from http://dwb4.unl.edu/Diss/Deters/Deters.pdf

  • Dillenbourg, P. (1999). What do you mean by collaborative learning. In P. Dillenbourg (Ed.), Collaborative-learning: Cognitive and computational approaches (Vol. 1, pp. 1–15). Oxford: Elsevier.

    Google Scholar 

  • Dole, S., Bloom, L., & Doss, K. K. (2017). Engaged learning: Impact of PBL and PjBL with elementary and middle grade students. Interdisciplinary Journal of Problem-Based Learning, 11(2).

  • Dunlap, J. C., & Grabinger, S. (2003). Preparing students for lifelong learning: A review of instructional features and teaching methodologies. Performance Improvement Quarterly, 16(2), 6–25.

    Article  Google Scholar 

  • Engeström, Y. (2001). Expansive learning at work: Toward an activity theoretical reconceptualization. Journal of Education and Work, 14(1), 133–156.

    Article  Google Scholar 

  • Fawcett, L. M., & Garton, A. F. (2005). The effect of peer collaboration on children's problem-solving ability. British Journal of Educational Psychology, 75(2), 157–169.

    Article  Google Scholar 

  • Fischer, F., Kollar, I., Stegmann, K., & Wecker, C. (2013). Toward a script theory of guidance in computer-supported collaborative learning. Educational Psychologist, 48(1), 56–66.

    Article  Google Scholar 

  • Fisher, Z., & Tipton, E. (2015). Robumeta: An R-package for robust variance estimation in meta-analysis. arXiv preprint arXiv:1503.02220.

  • Fitzgerald, J., & Graves, M. F. (2004). Reading supports for all: Scaffolding reading experiences help English language learners master both reading and content. Educational Leadership, 62(4), 68–71.

    Google Scholar 

  • Ford, M. J., & Wargo, B. M. (2012). Dialogic framing of scientific content for conceptual and epistemic understanding. Science Education, 96(3), 369–391.

    Article  Google Scholar 

  • Forsyth, D. R. (2018). Group dynamics (7th ed.). Boston: Cengage Learning.

    Google Scholar 

  • Fuchs, L. S., Fuchs, D., Kazdan, S., Karns, K., Calhoon, M. B., Hamlett, C. L., & Hewlett, S. (2000). Effects of workgroup structure and size on student productivity during collaborative work on complex tasks. The Elementary School Journal, 100(3), 183–212.

    Article  Google Scholar 

  • Gijbels, D., Dochy, F., Van den Bossche, P., & Segers, M. (2005). Effects of problem-based learning: A meta-analysis from the angle of assessment. Review of Educational Research, 75(1), 27–61. https://doi.org/10.3102/00346543075001027.

    Article  Google Scholar 

  • Gijlers, H., Weinberger, A., van Dijk, A. M., Bollen, L., & van Joolingen, W. (2013). Collaborative drawing on a shared digital canvas in elementary science education: The effects of script and task awareness support. International Journal of Computer-Supported Collaborative Learning, 8(4), 427–453. https://doi.org/10.1007/s11412-013-9180-5.

    Article  Google Scholar 

  • Greiff, S., Wüstenberg, S., Csapó, B., Demetriou, A., Hautamäki, J., Graesser, A. C., & Martin, R. (2014). Domain-general problem solving skills and education in the 21st century. Educational Research Review, 13, 74–83. https://doi.org/10.1016/j.edurev.2014.10.002.

    Article  Google Scholar 

  • Hannafin, M., Land, S., & Oliver, K. (1999). Open-ended learning environments: Foundations, methods, and models. In C. M. Reigeluth (Ed.), Instructional-design theories and models: Volume II: A new paradigm of instructional theory (pp. 115–140). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Hayes, A. F., & Krippendorff, K. (2007). Answering the call for a standard reliability measure for coding data. Communication Methods and Measures, 1, 77–89.

    Article  Google Scholar 

  • Hedges, L. V. (1982). Estimation of effect size from a series of independent experiments. Psychological Bulletin, 92(2), 490–499. https://doi.org/10.1037/0033-2909.92.2.490.

    Article  Google Scholar 

  • Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1(1), 39–65.

    Article  Google Scholar 

  • Heller, P., Keith, R., & Anderson, S. (1992). Teaching problem solving through collaborative grouping. Part 1: Group versus individual problem solving. American Journal of Physics, 60(7), 627–636.

    Article  Google Scholar 

  • Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235–266.

    Article  Google Scholar 

  • Hmelo-Silver, C. E., & Barrows, H. S. (2015). Problem-based learning: Goals for learning and strategies for facilitating. In A. Walker, H. Leary, C. E. HmeloSilver, P. A. Ertmer, & P. A. (Eds.), Essential readings in problem-based learning: Exploring and extending the legacy of Howard S. Barrows (pp. 69–84). West Lafayette: Purdue University Press.

    Google Scholar 

  • Hung, D. W. L., & Wong, A. F. (2000). Activity theory as a framework for project work in learning environments. Educational Technology, 40(2), 33–37.

    Google Scholar 

  • Hwang, G. J., Shi, Y. R., & Chu, H. C. (2011). A concept map approach to developing collaborative Mindtools for context-aware ubiquitous learning. British Journal of Educational Technology, 42(5), 778–789.

    Article  Google Scholar 

  • Janssen, J., & Bodemer, D. (2013). Coordinated computer-supported collaborative learning: Awareness and awareness tools. Educational Psychologist, 48(1), 40–55.

    Article  Google Scholar 

  • Janssen, J., Kirschner, F., Erkens, G., Kirschner, P. A., & Paas, F. (2010). Making the black box of collaborative learning transparent: Combining process-oriented and cognitive load approaches. Educational Psychology Review, 22(2), 139–154.

    Article  Google Scholar 

  • Janssen, J., Erkens, G., & Kirschner, P. A. (2011). Group awareness tools: It’s what you do with it that matters. Computers in Human Behavior, 27(3), 1046–1058.

    Article  Google Scholar 

  • Järvelä, S., & Hadwin, A. F. (2013). New frontiers: Regulating learning in CSCL. Educational Psychologist, 48(1), 25–39.

    Article  Google Scholar 

  • Jeong, H., & Chi, M. T. H. (2006). Knowledge convergence and collaborative learning. Instructional Science, 35(4), 287–315. https://doi.org/10.1007/s11251-006-9008-z.

    Article  Google Scholar 

  • Jeong, H., & Hmelo-Silver, C. E. (2016). Seven affordances of computer-supported collaborative learning: How to support collaborative learning? How can technologies help? Educational Psychologist, 51(2), 247–265. https://doi.org/10.1080/00461520.2016.1158654.

    Article  Google Scholar 

  • Johnson, D. W., & Johnson, R. T. (1989). Cooperation and competition: Theory and research. Edina: Interaction Book Company.

    Google Scholar 

  • Johnson, D. W., & Johnson, R. T. (2009). An educational psychology success story: Social interdependence theory and cooperative learning. Educational Researcher, 38(5), 365–379. https://doi.org/10.3102/0013189X09339057.

    Article  Google Scholar 

  • Jonassen, D. H. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. New York: Routledge.

    Google Scholar 

  • Kalaian, S. A., & Kasim, R. M. (2017). Effectiveness of various innovative learning methods in health science classrooms: A meta-analysis. Advances in Health Sciences Education, 22(5), 1151–1167. https://doi.org/10.1007/s10459-017-9753-6.

    Article  Google Scholar 

  • Kang, J., Liu, M., & Qu, W. (2017). Using gameplay data to examine learning behavior patterns in a serious game. Computers in Human Behavior, 72, 757–770. https://doi.org/10.1016/j.chb.2016.09.062.

    Article  Google Scholar 

  • Ke, F., & Abras, T. (2013). Games for engaged learning of middle school children with special learning needs. British Journal of Educational Technology, 44(2), 225–242. https://doi.org/10.1111/j.1467-8535.2012.01326.x.

    Article  Google Scholar 

  • Kirschner, P. A., & Erkens, G. (2013). Toward a framework for CSCL research. Educational Psychologist, 48(1), 1–8. https://doi.org/10.1080/00461520.2012.750227.

    Article  Google Scholar 

  • Kim, N. J., Belland, B. R., & Walker, A. E. (2018). Effectiveness of computer-based scaffolding in the context of problem-based learning for STEM education: Bayesian meta-analysis. Educational Psychology Review, 30(2), 397–429. https://doi.org/10.1007/s10648-017-9419-1.

    Article  Google Scholar 

  • Kim, N. J., Belland, B. R., & Axelrod, D. (2019). Scaffolding for optimal challenge in K–12 problem-based learning. Interdisciplinary Journal of Problem-Based Learning, 13(1). https://doi.org/10.7771/1541-5015.1712.

  • Kirschner, F., Paas, F., & Kirschner, P. A. (2009). Individual and group-based learning from complex cognitive tasks: Effects on retention and transfer efficiency. Computers in Human Behavior, 25(2), 306–314.

    Article  Google Scholar 

  • Koenig, A. D. (2008a). Exploring effective educational video game design: The interplay between narrative and game-schema construction (PhD Dissertation). Arizona State University, Tempe, AZ, USA. Retrieved from http://search.proquest.com/openview/7b39dcaff3a9e0b8258dec987e0e61ef/1?pq-origsite=gscholar&cbl=18750&diss=y

  • Kollar, I., Fischer, F., & Hesse, F. W. (2006). Collaboration scripts - a conceptual analysis. Educational Psychology Review, 18(2), 159–185. https://doi.org/10.1007/s10648-006-9007-2.

    Article  Google Scholar 

  • Kooloos, J. G. M., Klaassen, T., Vereijken, M., Van Kuppeveld, S., Bolhuis, S., & Vorstenbosch, M. (2011). Collaborative group work: Effects of group size and assignment structure on learning gain, student satisfaction and perceived participation. Medical Teacher, 33(12), 983–988. https://doi.org/10.3109/0142159X.2011.588733.

    Article  Google Scholar 

  • Krippendorff, K. (2004). Content analysis: An introduction to its methodology (2nd ed.). Thousand Oaks: Sage Publications.

    Google Scholar 

  • Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring systems A meta-analytic review. Review of Educational Research, 86(1), 42–78.

    Article  Google Scholar 

  • Laru, J. (2012). Scaffolding learning activities with collaborative scripts and mobile devices. Oulu: Oulu University Library. Retrieved from https://oula.linneanet.fi/vwebv/holdingsInfo?bibId=1197315

  • Lazakidou, G., & Retalis, S. (2010). Using computer supported collaborative learning strategies for helping students acquire self-regulated problem-solving skills in mathematics. Computers & Education, 54(1), 3–13. https://doi.org/10.1016/j.compedu.2009.02.020.

    Article  Google Scholar 

  • Leont'ev, A. N. (1974). The problem of activity in psychology. Soviet Psychology, 13(2), 4–33.

    Article  Google Scholar 

  • Lonchamp, J. (2012). An instrumental perspective on CSCL systems. International Journal of Computer-Supported Collaborative Learning, 7(2), 211–237.

    Article  Google Scholar 

  • Looi, C.-K., & Lim, K.-S. (2009). From bar diagrams to letter-symbolic algebra: A technology-enabled bridging. Journal of Computer Assisted Learning, 25(4), 358–374. https://doi.org/10.1111/jca.2009.25.issue-410.1111/j.1365-2729.2009.00313.x.

    Article  Google Scholar 

  • Lou, Y., Abrami, P. C., & d’Apollonia, S. (2001). Small group and individual learning with technology: A meta-analysis. Review of Educational Research, 71(3), 449–521.

    Article  Google Scholar 

  • Luria, A. R. (1976). Cognitive development: Its cultural and social foundations. (M. Cole, Ed., M. Lopez-Morillas & L. Solotaroff, Trans.). Cambridge: Harvard University Press.

  • Ma, W., Adesope, O. O., Nesbit, J. C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A meta-analysis. Journal of Educational Psychology, 106(4), 901–918.

    Article  Google Scholar 

  • McNeill, K., & Krajcik, J. (2009). Synergy between teacher practices and curricular scaffolds to support students in using domain-specific and domain-general knowledge in writing arguments to explain phenomena. Journal of the Learning Sciences, 18(3), 416–460.

    Article  Google Scholar 

  • Mende, S., Proske, A., Körndle, H., & Narciss, S. (2017). Who benefits from a low versus high guidance CSCL script and why? Instructional Science, 45(4), 439–468.

    Article  Google Scholar 

  • Molenaar, I., van Boxtel, C. A. M., & Sleegers, P. J. C. (2011). Metacognitive scaffolding in an innovative learning arrangement. Instructional Science, 39(6), 785–803.

    Article  Google Scholar 

  • Nichols, K., Hanan, J., & Ranasinghe, M. (2013). Transforming the social practices of learning with representations: A study of disciplinary discourse. Research in Science Education, 43, 179–208.

    Article  Google Scholar 

  • Noroozi, O., Teasley, S. D., Biemans, H. J. A., Weinberger, A., & Mulder, M. (2013a). Facilitating learning in multidisciplinary groups with transactive CSCL scripts. International Journal of Computer-Supported Collaborative Learning, 8(2), 189–223.

    Article  Google Scholar 

  • Noroozi, O., Weinberger, A., Biemans, H. J. A., Mulder, M., & Chizari, M. (2013b). Facilitating argumentative knowledge construction through a transactive discussion script in CSCL. Computers & Education, 61, 59–76. https://doi.org/10.1016/j.compedu.2012.08.013.

    Article  Google Scholar 

  • Noroozi, O., Kirschner, P. A., Biemans, H. J. A., & Mulder, M. (2018). Promoting argumentation competence: Extending from first- to second-order scaffolding through adaptive fading. Educational Psychology Review, 30(1), 153–176.

    Article  Google Scholar 

  • Nussbaum, M. (2002). Scaffolding argumentation in the social studies classroom. The Social Studies, 93(2), 79–83. https://doi.org/10.1080/00377990209599887.

    Article  Google Scholar 

  • Nussbaum, M., Alvarez, C., McFarlane, A., Gomez, F., Claro, S., & Radovic, D. (2009). Technology as small group face-to-face collaborative scaffolding. Computers & Education, 52(1), 147–153.

    Article  Google Scholar 

  • Overdijk, M., Van Diggelen, W., Kirschner, P. A., & Baker, M. (2012). Connecting agents and artifacts in CSCL: Towards a rationale of mutual shaping. International Journal of Computer-Supported Collaborative Learning, 7(2), 193–210.

    Article  Google Scholar 

  • Palmérus, K., & Hägglund, S. (1991). The impact of children/caregiver ratio on activities and social interaction in six day care Centre groups. Early Child Development and Care, 67(1), 29–38.

    Article  Google Scholar 

  • Pata, K., Lehtinen, E., & Sarapuu, T. (2006). Inter-relations of tutors’ and peers’ scaffolding and decision-making discourse acts. Instructional Science, 34(4), 313–341.

    Article  Google Scholar 

  • Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. Journal of the Learning Sciences, 13(3), 423–451. https://doi.org/10.1207/s15327809jls1303_6.

    Article  Google Scholar 

  • Piaget, J. (1932). The moral judgment of the child. London: Routledge & Kegan Paul.

    Google Scholar 

  • Porter, A., McMaken, J., Hwang, J., & Yang, R. (2011). Common Core standards: The new U.S. intended curriculum. Educational Researcher, 40(3), 103–116.

    Article  Google Scholar 

  • Proctor, C. P., Dalton, B., & Grisham, D. L. (2007). Scaffolding English language learners and struggling readers in a universal literacy environment with embedded strategy instruction and vocabulary support. Journal of Literacy Research, 39(1), 71–93. https://doi.org/10.1080/10862960709336758.

    Article  Google Scholar 

  • Proske, A., Narciss, S., & McNamara, D. S. (2012). Computer-based scaffolding to facilitate students’ development of expertise in academic writing. Journal of Research in Reading, 35(2), 136–152. https://doi.org/10.1111/j.1467-9817.2010.01450.x.

    Article  Google Scholar 

  • Puntambekar, S. (2015). Distributing scaffolding across multiple levels: Individuals, small groups, and a class of students. Essential readings in problem-based learning, 207-221.

  • Puntambekar, S., & Kolodner, J. (2005). Toward implementing distributed scaffolding: Helping students learn science from design. Journal of Research in Science Teaching, 42(2), 185–217. https://doi.org/10.1002/tea.20048.

    Article  Google Scholar 

  • Raes, A., Schellens, T., De Wever, B., & Vanderhoven, E. (2012). Scaffolding information problem solving in web-based collaborative inquiry learning. Computers & Education, 59(1), 82–94. https://doi.org/10.1016/j.compedu.2011.11.010.

    Article  Google Scholar 

  • Reeve, J. (2009). Why teachers adopt a controlling motivating style toward students and how they can become more autonomy supportive. Educational Psychologist, 44(3), 159–175.

    Article  Google Scholar 

  • Reif, F., & Scott, L. A. (1999). Teaching scientific thinking skills: Students and computers coaching each other. American Journal of Physics, 67(9), 819–831. https://doi.org/10.1119/1.19130.

    Article  Google Scholar 

  • Rienties, B., Giesbers, B., Tempelaar, D., Lygo-Baker, S., Segers, M., & Gijselaers, W. (2012). The role of scaffolding and motivation in CSCL. Computers & Education, 59(3), 893–906. https://doi.org/10.1016/j.compedu.2012.04.010.

    Article  Google Scholar 

  • Rogat, T. K., Witham, S. A., & Chinn, C. A. (2014). Teachers’ autonomy-relevant practices within an inquiry-based science curricular context: Extending the range of academically significant autonomy-supportive practices. Teachers College Record, 116(7), 1–46.

    Google Scholar 

  • Rogoff, B. (1995). Observing sociocultural activity on three planes: Participatory appropriation, guided participation, and apprenticeship. In J. V. Wertsch, P. D. Rio, & A. Alvarez (Eds.), Sociocultural studies of mind (p. 252). Cambridge: Cambridge University Press.

    Google Scholar 

  • Roschelle, J., Rafanan, K., Bhanot, R., Estrella, G., Penuel, B., Nussbaum, M., & Claro, S. (2010a). Scaffolding group explanation and feedback with handheld technology: Impact on students’ mathematics learning. Educational Technology Research and Development, 58(4), 399–419. https://doi.org/10.1007/s11423-009-9142-9.

    Article  Google Scholar 

  • Roschelle, J., Shechtman, N., Tatar, D., Hegedus, S., Hopkins, B., Empson, S., Knudsen, J., & Gallagher, L. P. (2010b). Integration of technology, curriculum, and professional development for advancing middle school mathematics three large-scale studies. American Educational Research Journal, 47(4), 833–878. https://doi.org/10.3102/0002831210367426.

    Article  Google Scholar 

  • Rotgans, J. I., & Schmidt, H. G. (2011). Cognitive engagement in the problem-based learning classroom. Advances in Health Sciences Education, 16(4), 465–479.

    Article  Google Scholar 

  • Ruzhitskaya, L. (2011). The effects of computer-supported inquiry-based learning methods and peer interaction on learning stellar parallax (PhD Thesis). University of Missouri--Columbia, Columbia, MO, USA. Retrieved from ProQuest Dissertations & Theses Full Text. (Publication Number 3515839).

  • Saye, J., & Brush, T. (2002). Scaffolding critical reasoning about history and social issues in multimedia-supported learning environments. Educational Technology Research and Development, 50(3), 77–96. https://doi.org/10.1007/BF02505026.

    Article  Google Scholar 

  • Scheuer, O., Mclaren, B. M., Weinberger, A., & Niebuhr, S. (2014). Promoting critical, elaborative discussions through a collaboration script and argument diagrams. Instructional Science; Dordrecht, 42(2), 127–157. https://doi.org/10.1007/s11251-013-9274-5.

    Article  Google Scholar 

  • Schmidt, H. G., Rotgans, J. I., & Yew, E. H. (2011). The process of problem-based learning: What works and why. Medical Education, 45(8), 792–806.

    Article  Google Scholar 

  • Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153–189. https://doi.org/10.3102/0034654307313795.

    Article  Google Scholar 

  • Sills, J., Rowse, G., & Emerson, L. M. (2016). The role of collaboration in the cognitive development of young children: A systematic review. Child: Care, Health and Development, 42(3), 313–324.

    Google Scholar 

  • Slavin, R. E. (1980). Cooperative learning. Review of Educational Research, 50(2), 315–342. https://doi.org/10.3102/00346543050002315.

    Article  Google Scholar 

  • Smith, P. K., & Connolly, K. J. (1980). The ecology of preschool behaviour. Cambridge University Press.

  • Soller, A., Goodman, B., Linton, F., & Gaimari, R. (1998). Promoting effective peer interaction in an intelligent collaborative learning system. In Intelligent Tutoring Systems (pp. 186–195). Springer. doi:https://doi.org/10.1007/3-540-68716-5_24.

    Chapter  Google Scholar 

  • Splichal, J. M., Oshima, J., & Oshima, R. (2018). Regulation of collaboration in project-based learning mediated by CSCL scripting reflection. Computers & Education, 125, 132–145.

    Article  Google Scholar 

  • Steenbergen-Hu, S., & Cooper, H. (2013). A meta-analysis of the effectiveness of intelligent tutoring systems on K–12 students’ mathematical learning. Journal of Educational Psychology, 105(4), 970–987. https://doi.org/10.1037/a0032447.

    Article  Google Scholar 

  • Steenbergen-Hu, S., & Cooper, H. (2014). A meta-analysis of the effectiveness of intelligent tutoring systems on college students’ academic learning. Journal of Educational Psychology, 106(2), 331–347. https://doi.org/10.1037/a0034752.

    Article  Google Scholar 

  • Stefanou, C. R., Perencevich, K. C., DiCintio, M., & Turner, J. C. (2004). Supporting autonomy in the classroom: Ways teachers encourage student decision making and ownership. Educational Psychologist, 39(2), 97–110.

    Article  Google Scholar 

  • Stephanou, G., Gkavras, G., & Doulkeridou, M. (2013). The role of teachers’ self-and collective-efficacy beliefs on their job satisfaction and experienced emotions in school. Psychology, 4(03), 268–278.

    Article  Google Scholar 

  • Strijbos, J. W., Martens, R. L., & Jochems, W. M. (2004). Designing for interaction: Six steps to designing computer-supported group-based learning. Computers & Education, 42(4), 403–424.

    Article  Google Scholar 

  • Su, Y. (2007). The impact of scaffolding type and prior knowledge in a hypermedia, problem-based learning environment (PhD Thesis). Arizona State University, Tempe, AZ, USA. Retrieved from ProQuest Dissertations & Theses Full Text. (Publication Number 3288016).

  • Su, Y., & Klein, J. D. (2010). Using scaffolds in problem-based hypermedia. Journal of Educational Multimedia and Hypermedia, 19(3), 327–347.

    Google Scholar 

  • Sugrue, B. (1995). A theory-based framework for assessing domain-specific problem-solving ability. Educational Measurement: Issues and Practice, 14(3), 29–35.

    Article  Google Scholar 

  • Sung, Y. T., Yang, J. M., & Lee, H. Y. (2017). The effects of mobile-computer-supported collaborative learning: Meta-analysis and critical synthesis. Review of Educational Research, 87(4), 768–805.

    Article  Google Scholar 

  • Swanson, H. L., & Deshler, D. (2003). Instructing adolescents with learning disabilities: Converting a meta-analysis to practice. Journal of Learning Disabilities, 36(2), 124–135. https://doi.org/10.1177/002221940303600205.

    Article  Google Scholar 

  • Swanson, H. L., & Lussier, C. M. (2001). A selective synthesis of the experimental literature on dynamic assessment. Review of Educational Research, 71(2), 321–363. https://doi.org/10.3102/00346543071002321.

    Article  Google Scholar 

  • Tabak, I. (2004). Synergy: A complement to emerging patterns of distributed scaffolding. Journal of the Learning Sciences, 13(3), 305–335. https://doi.org/10.1207/s15327809jls1303_3.

    Article  Google Scholar 

  • Tan, S. C., Loong, D. H. W., & So, K. L. (2005). Fostering scientific inquiry in schools through science research course and computer-supported collaborative learning (CSCL). International Journal of Learning Technology, 1(3), 273–292. https://doi.org/10.1504/IJLT.2005.006518.

    Article  Google Scholar 

  • Tanner-Smith, E. E., & Tipton, E. (2014). Robust variance estimation with dependent effect sizes: Practical considerations including a software tutorial in Stata and SPSS. Research Synthesis Methods, 5(1), 13–30.

    Article  Google Scholar 

  • Tchounikine, P. (2016). Contribution to a theory of CSCL scripts: Taking into account the appropriation of scripts by learners. International Journal of Computer-Supported Collaborative Learning, 11(3), 349–369. https://doi.org/10.1007/s11412-016-9240-8.

    Article  Google Scholar 

  • Ustunel, H. H., & Tokel, S. T. (2018). Distributed scaffolding: Synergy in technology-enhanced learning environments. Technology, Knowledge and Learning; Dordrecht, 23(1), 129–160. https://doi.org/10.1007/s10758-017-9299-y.

    Article  Google Scholar 

  • Van den Bossche, P., Gijselaers, W. H., Segers, M., & Kirschner, P. A. (2006). Social and cognitive factors driving teamwork in collaborative learning environments: Team learning beliefs and behaviors. Small Group Research, 37(5), 490–521.

    Article  Google Scholar 

  • Van der Kleij, F. M., Feskens, R. C., & Eggen, T. J. (2015). Effects of feedback in a computer-based learning environment on students’ learning outcomes: A meta-analysis. Review of Educational Research, 85(4), 475–511. https://doi.org/10.3102/0034654314564881.

    Article  Google Scholar 

  • VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197–221.

    Article  Google Scholar 

  • Vogel, F., Kollar, I., Ufer, S., Reichersdorfer, E., Reiss, K., & Fischer, F. (2016a). Developing argumentation skills in mathematics through computer-supported collaborative learning: The role of transactivity. Instructional Science, 44(5), 477–500. https://doi.org/10.1007/s11251-016-9380-2.

    Article  Google Scholar 

  • Vogel, F., Wecker, C., Kollar, I., & Fischer, F. (2016b). Socio-cognitive scaffolding with computer-supported collaboration scripts: A meta-analysis. Educational Psychology Review, 1–35. doi:https://doi.org/10.1007/s10648-016-9361-7.

    Article  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher mental processes. Cambridge: Harvard University Press.

    Google Scholar 

  • Ward, B. A. (1987). Instructional grouping in the classroom. School improvement research series close-up no. 2. Portland, OR: Northwest regional educational lab.

  • Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46(1), 71–95. https://doi.org/10.1016/j.compedu.2005.04.003.

    Article  Google Scholar 

  • Weinberger, A., Ertl, B., Fischer, F., & Mandl, H. (2005). Epistemic and social scripts in computer–supported collaborative learning. Instructional Science, 33(1), 1–30. https://doi.org/10.1007/s11251-004-2322-4.

    Article  Google Scholar 

  • Weinberger, A., Stegmann, K., & Fischer, F. (2010). Learning to argue online: Scripted groups surpass individuals (unscripted groups do not). Computers in Human Behavior, 26(4), 506–515. https://doi.org/10.1016/j.chb.2009.08.007.

    Article  Google Scholar 

  • Weinberger, A., Marttunen, M., Laurinen, L., & Stegmann, K. (2013). Inducing socio-cognitive conflict in Finnish and German groups of online learners by CSCL script. International Journal of Computer-Supported Collaborative Learning, 8(3), 333–349.

    Article  Google Scholar 

  • Wever, B. D., Hämäläinen, R., Voet, M., & Gielen, M. (2015). A wiki task for first-year university students: The effect of scripting students’ collaboration. The Internet and Higher Education, 25, 37–44. https://doi.org/10.1016/j.iheduc.2014.12.002.

    Article  Google Scholar 

  • Wijnia, L., Loyens, S., & Derous, E. (2011). Investigating effects of problem-based versus lecture-based learning environments on student motivation. Contemporary Educational Psychology, 36(2), 101–113. https://doi.org/10.1016/j.cedpsych.2010.11.003.

    Article  Google Scholar 

  • Wise, A. F., & Schwarz, B. B. (2017). Visions of CSCL: Eight provocations for the future of the field. International Journal of Computer-Supported Collaborative Learning, 12(4), 423–467.

    Article  Google Scholar 

  • Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x.

    Article  Google Scholar 

  • Yoon, S. A., Elinich, K., Wang, J., Steinmeier, C., & Tucker, S. (2012). Using augmented reality and knowledge-building scaffolds to improve learning in a science museum. International Journal of Computer-Supported Collaborative Learning, 7(4), 519–541. https://doi.org/10.1007/s11412-012-9156-x.

    Article  Google Scholar 

  • Zydney, J. M. (2008). Cognitive tools for scaffolding students defining an ill-structured problem. Journal of Educational Computing Research, 38(4), 353–385. https://doi.org/10.2190/EC.38.4.a.

    Article  Google Scholar 

References with Asterisks Indicates Articles Included in Meta-Analysis

  • *Adair, D., & Jaeger, M. (2014). Integration of computational fluid dynamics into a fluid mechanics curriculum. Computer Applications in Engineering Education, 22, 131–141. https://doi.org/10.1002/cae.20539

    Article  Google Scholar 

  • *Ardac, D., & Sezen, A. H. (2002). Effectiveness of computer-based chemistry instruction in enhancing the learning of content and variable control under guided versus unguided conditions. Journal of Science Education and Technology, 11, 39–48. https://doi.org/10.1023/A:1013995314094

    Article  Google Scholar 

  • *Atkinson, R. K., Renkl, A., & Merrill, M. M. (2003). Transitioning from studying examples to solving problems: Effects of self-explanation prompts and fading worked-out steps. Journal of Educational Psychology, 95, 774–783. https://doi.org/10.1037/0022-0663.95.4.774

    Article  Google Scholar 

  • *Aydin, E., & Cagiltay, N. (2012). A new RF and Microwave Engineering course enriched with advanced technologies. Computer Applications in Engineering Education, 20(4), 634–645. https://doi.org/10.1002/cae.20432

    Article  Google Scholar 

  • *Barab, S. A., Scott, B., Siyahhan, S., Goldstone, R., Ingram-Goble, A., Zuiker, S. J., & Warren, S. (2009). Transformational play as a curricular scaffold: Using videogames to support science education. Journal of Science Education and Technology, 18, 305–320. https://doi.org/10.1007/s10956-009-9171-5

    Article  Google Scholar 

  • CBarak, M., & Dori, Y. J. (2005). Enhancing undergraduate students' chemistry understanding through project-based learning in an IT environment. Science Education, 89, 117–139. https://doi.org/10.1002/sce.20027

    Article  Google Scholar 

  • *Beal, C. R., Arroyo, I., Cohen, P. R., Woolf, B. P., & Beal, C. R. (2010). Evaluation of AnimalWatch: An intelligent tutoring system for arithmetic and fractions. Journal of Interactive Online Learning, 9(1), 64–77.

  • *Belland, B. R. (2008). Supporting middle school students’ construction of evidence-based arguments: Impact of and student interactions with computerbased argumentation scaffolds (PhD dissertation). Purdue University, West Lafayette, IN, USA. Retrieved from ProQuest Dissertations & Theses Full Text. (publication number 304502316).

  • *Bornas, X., & Llabrés, J. (2001). Helping students build knowledge: what computers should do. Information Technology in Childhood Education Annual, 2001(1), 267–280.

  • *Butz, B. P., Duarte, M., & Miller, S. M. (2006). An intelligent tutoring system for circuit analysis. IEEE Transactions on Education, 49, 216–223. https://doi.org/10.1109/TE.2006.872407

    Article  Google Scholar 

  • *Chang, K. E., Sung, Y. T., & Chen, S. F. (2001). Learning through computer-based concept mapping with scaffolding aid. Journal of Computer Assisted Learning, 17, 21–33. https://doi.org/10.1046/j.1365-2729.2001.00156.x

    Article  Google Scholar 

  • *Chang, H. Y., Quintana, C., & Krajcik, J. S. (2010). The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter. Science Education, 94, 73–94. https://doi.org/10.1002/sce.20352

  • *Chen, C.-H. (2014). An adaptive scaffolding e-learning system for middle school students’ physics learning. Australasian Journal of Educational Technology, 30, 342–355. https://doi.org/10.14742/ajet.v30i3.430

  • *Chen, Y.-S., Kao, T.-C., & Sheu, J.-P. (2003). A mobile learning system for scaffolding bird watching learning. Journal of Computer Assisted Learning, 19, 347–359. https://doi.org/10.1046/j.0266-4909.2003.00036.x

    Article  Google Scholar 

  • *Chen, Y.-S., Kao, T.-C., & Sheu, J.-P. (2005). Realizing outdoor independent learning with a butterfly-watching mobile learning system. Journal of Educational Computing Research, 33, 395–417. https://doi.org/10.2190/0PAB-HRN9-PJ9K-DY0C

    Article  Google Scholar 

  • *Chen, H.-H., Chen, Y.-J., & Chen, K.-J. (2013). The design and effect of a scaffolded concept mapping strategy on learning performance in an undergraduate database course. IEEE Transactions on Education, 56, 300–307. https://doi.org/10.1109/TE.2012.2217747

    Article  Google Scholar 

  • *Chin, D. B., Dohmen, I. M., & Schwartz, D. L. (2013). Young children can learn scientific reasoning with teachable agents. IEEE Transactions on Learning Technologies, 6(3), 248–257. https://doi.org/10.1109/TLT.2013.24

    Article  Google Scholar 

  • *Ching, Y.-H. (2009). The effects of computer-based video strategy training for problem representation and self-explanation on undergraduate students representing and solving ill-structured problems (PhD Thesis). The Pennsylvania State University, State College, PA, USA. Retrieved from ProQuest Dissertations & Theses Full Text. (Publication Number 3399635).

  • *Chu, H.-C., Hwang, G.-J., & Tsai, C.-C. (2010). A knowledge engineering approach to developing mindtools for context-aware ubiquitous learning. Computers & Education, 54, 289–297. https://doi.org/10.1016/j.compedu.2009.08.023

    Article  Google Scholar 

  • *Clarebout, G., & Elen, J. (2006). Open learning environments and the impact of a pedagogical agent. Journal of Educational Computing Research, 35, 211–226. https://doi.org/10.2190/3UL1-4756-H837-2704

    Article  Google Scholar 

  • *Clark, D. B., Touchman, S., Martinez-Garza, M., Ramirez-Marin, F., & Skjerping Drews, T. (2012). Bilingual language supports in online science inquiry environments. Computers & Education, 58(4), 1207–1224. doi:https://doi.org/10.1016/j.compedu.2011.11.019

    Article  Google Scholar 

  • *Conati, C., & Vanlehn, K. (2000). Toward computer-based support of meta-cognitive skills: A computational framework to coach self-explanation. International Journal of Artificial Intelligence in Education, 11, 389–415.

  • *Corbett, A. T., & Anderson, J. R. (2001). Locus of feedback control in computer-based tutoring: Impact on learning rate, achievement and attitudes. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 245–252). New York, NY, USA: ACM. https://doi.org/10.1145/365024.365111

  • *Dancik, G., & Kumar, A. (2003). A tutor for counter-controlled loop concepts and its evaluation. In Frontiers in Education, 2003. FIE 2003 33rd Annual (Vol. 1, pp. T3C–7–12). https://doi.org/10.1109/FIE.2003.1263331

  • *Demetriadis, S. N., Papadopoulos, P. M., Stamelos, I. G., & Fischer, F. (2008). The effect of scaffolding students’ context-generating cognitive activity in technology-enhanced case-based learning. Computers & Education, 51, 939–954. https://doi.org/10.1016/j.compedu.2007.09.012

    Article  Google Scholar 

  • *Dori, Y. J., & Belcher, J. (2005). How does technology-enabled active learning affect undergraduate students’ understanding of electromagnetism concepts? Journal of the Learning Sciences, 14, 243–279. https://doi.org/10.1207/s15327809jls1402_3

    Article  Google Scholar 

  • *Dori, Y. J., & Sasson, I. (2008). Chemical understanding and graphing skills in an honors case-based computerized chemistry laboratory environment: The value of bidirectional visual and textual representations. Journal of Research in Science Teaching, 45, 219–250. https://doi.org/10.1002/tea.20197

    Article  Google Scholar 

  • *Dori, Y. J., Barak, M., & Adir, N. (2003). A web-based chemistry course as a means to foster freshmen learning. Journal of Chemical Education, 80, 1084–1092. https://doi.org/10.1021/ed080p1084

    Article  Google Scholar 

  • *Etheris, A. I., & Tan, S. C. (2004). Computer-supported collaborative problem solving and anchored instruction in a mathematics classroom: an exploratory study. International Journal of Learning Technology, 1, 16. https://doi.org/10.1504/ijlt.2004.003680

    Article  Google Scholar 

  • *Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., … LeMaster, R. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics - Physics.

  • *Frailich, M., Kesner, M., & Hofstein, A. (2009). Enhancing students’ understanding of the concept of chemical bonding by using activities provided on an interactive website. Journal of Research in Science Teaching, 46, 289–310. https://doi.org/10.1002/tea.20278

    Article  Google Scholar 

  • *Fund, Z. (2007). The effects of scaffolded computerized science problem-solving on achievement outcomes: a comparative study of support programs. Journal of Computer Assisted Learning, 23(5), 410–424. https://doi.org/10.1111/j.13652729.2007.00226.x

  • *Galleto, P. G., & Refugio, C. N. (2012). Students' skills in mathematical computation using graphing calculator. In Proceedings of the 17th Asian technology conference in mathematics. Thailand: ATCM.

  • *Ge, X., & Land, S.M. (2003). Scaffolding students' problem solving processes in an ill-structured task using question prompts and peer interactions. Educational Technology Research & Development, 51(1), 21–38. https://doi.org/10.1007/BF02504515

    Article  Google Scholar 

  • *Ge, X., Planas, L. G., & Er, N. (2010). A cognitive support system to scaffold students’ problem-based learning in a web-based learning environment. Interdisciplinary Journal of Problem-Based Learning, 4(1), 30–56. https://doi.org/10.7771/1541-5015.1093

  • *Gijlers, A. H. (2005). Confrontation and co-construction: exploring and supporting collaborative scientific discovery learning with computer simulations (PhD Thesis). University of Twente, Enschede, The Netherlands.

  • *Girault, I., & d’Ham, C. (2013). Scaffolding a complex task of experimental design in chemistry with a computer environment. Journal of Science Education and Technology, 23, 514–526. https://doi.org/10.1007/s10956-013-9481-5

    Article  Google Scholar 

  • *Graesser, A. C., Jackson, G. T., Mathews, E. C., Mitchell, H. H., Olney, A., Ventura, M., … Louwerse, M. M. (2003). Why/AutoTutor: A test of learning gains from a physics tutor with natural language dialog. In Proceedings of the Twenty-Fifth Annual Conference of the Cognitive Science Society (pp. 1–6).

  • *Graesser, A. C., Wiley, J., Goldman, S. R., O’Reilly, T., Jeon, M., & McDaniel, B. (2007). SEEK Web tutor: Fostering a critical stance while exploring the causes of volcanic eruption. Metacognition & Learning, 2(2/3), 89–105. https://doi.org/10.1007/s11409-007-9013-x

    Article  Google Scholar 

  • Hickey, D. T., Barab, S. A., Ingram-Goble, A., & Zuiker, S. J. (2008). First things first: design principles for worthwhile educational videogames Proceedings of the 8th International conference for the learning sciences-Volume 1 (pp. 350–357): International Society of the Learning Sciences.

  • *Hmelo, C. E., & Day, R. S. (1999). Contextualized questioning to scaffold learning from simulations. Computers & Education, 32, 151–164. https://doi.org/10.1016/S0360-1315(98)00062-1

    Article  Google Scholar 

  • *Holland, J. (2009). A constraint-based ITS for the java programming language (PhD Thesis). University of Canterbury, Christchurch, New Zealand.

  • *Huang, L.-H., Dow, C.-R., Li, Y.-H., & Hsuan, P. (2013). u-TA: A ubiquitous teaching assistant using knowledge retrieval and adaptive learning techniques. Computer Applications in Engineering Education, 21, 245–255. https://doi.org/10.1002/cae.20466

    Article  Google Scholar 

  • *Hulshof, C. D., & de Jong, T. (2006). Using just-in-time information to support scientific discovery learning in a computer-based simulation. Interactive Learning Environments, 14, 79–94. https://doi.org/10.1080/10494820600769171

    Article  Google Scholar 

  • *Hundhausen, C. D., & Brown, J. L. (2008). Designing, visualizing, and discussing algorithms within a CS 1 studio experience: An empirical study. Computers & Education, 50, 301–326. https://doi.org/10.1016/j.compedu.2006.06.002

    Article  Google Scholar 

  • *Hundhausen, C., Agarwal, P., Zollars, R., & Carter, A. (2011). The design and experimental evaluation of a scaffolded software environment to improve engineering students’ disciplinary problem-solving skills. Journal of Engineering Education, 100, 574–603. https://doi.org/10.1002/j.2168-9830.2011.tb00027.x

    Article  Google Scholar 

  • *Hung, P.-H., Hwang, G.-J., Lin, Y.-F., Wu, T.-H., & Su, I.-H. (2013). Seamless connection between learning and assessment - Applying progressive learning tasks in mobile ecology inquiry. Journal of Educational Technology & Society, 16(1), 194–205.

  • *Hwang, W.-Y., & Hu, S.-S. (2013). Analysis of peer learning behaviors using multiple representations in virtual reality and their impacts on geometry problem solving. Computers & Education, 62, 308–319. https://doi.org/10.1016/j.compedu.2012.10.005

    Article  Google Scholar 

  • *Hwang, G.-J., Shi, Y.-R., & Chu, H.-C. (2010). A concept map approach to developing collaborative Mindtools for context-aware ubiquitous learning. British Journal of Educational Technology, 42, 778–789. https://doi.org/10.1111/j.1467-8535.2010.01102.x

    Article  Google Scholar 

  • *Hwang, G.-J., Tsai, C.-C., Chu, H.-C., Kinshuk, & Chen, C.-Y. (2012). A context-aware ubiquitous learning approach to conducting scientific inquiry activities in a science park. Australasian Journal of Educational Technology, 28, 931–947. https://doi.org/10.14742/ajet.v28i5.825

  • *Hwang, G.-J., Kuo, F.-R., Chen, N.-S., & Ho, H.-J. (2014). Effects of an integrated concept mapping and web-based problem-solving approach on students’ learning achievements, perceptions and cognitive loads. Computers & Education, 71, 77–86. https://doi.org/10.1016/j.compedu.2013.09.013

    Article  Google Scholar 

  • *Ifenthaler, D. (2012). Determining the effectiveness of prompts for self-regulated learning in problem-solving scenarios. Journal of Educational Technology & Society, 15(1), 38–52.

  • *Kaberman, Z., & Dori, Y. J. (2009). Question posing, inquiry, and modeling skills of chemistry students in the case-based computerized laboratory environment. International Journal of Science and Mathematics Education, 7, 597–625. https://doi.org/10.1007/s10763-007-9118-3

    Article  Google Scholar 

  • *Kajamies, A., Vauras, M., & Kinnunen, R. (2010). Instructing low-achievers in mathematical word problem solving. Scandinavian Journal of Educational Research, 54, 335–355. https://doi.org/10.1080/00313831.2010.493341

    Article  Google Scholar 

  • *Katai, Z. (2011). Multi-sensory method for teaching-learning recursion. Computer Applications in Engineering Education, 19, 234–243. https://doi.org/10.1002/cae.20305

    Article  Google Scholar 

  • *Kereluik, K. M. (2013). Scaffolding self-regulated learning online: A study in high school mathematics classrooms (PhD Thesis). Michigan State University, East Lansing, MI, USA. Retrieved from ProQuest Dissertations & Theses Full Text. (Publication Number 3604541).

  • *Kinnebrew, J. S., Segedy, J. R., & Biswas, G. (2014). Analyzing the temporal evolution of students' behaviors in open-ended learning environments. Metacognition and Learning, 9(2), 187–215. doi:https://doi.org/10.1007/s11409-014-9112-4

    Article  Google Scholar 

  • *Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent tutoring goes to school in the big city. International Journal of Artificial Intelligence in Education, 8, 30–43.

  • *Koenig, A. D. (2008b). Exploring effective educational video game design: The interplay between narrative and game-schema construction (PhD Thesis). Arizona State University, Tempe, AZ, USA. Retrieved from ProQuest Dissertations & Theses Full Text. (Publication Number 3303246).

  • *Kong, S. C. (2011). An evaluation study of the use of a cognitive tool in a one-to-one classroom for promoting classroom-based dialogic interaction. Computers & Education, 57, 1851–1864. https://doi.org/10.1016/j.compedu.2011.04.008

    Article  Google Scholar 

  • *Korganci, N., Miron, C., Dafinei, A., & Antohe, S. (2014). Comparison of generating concept maps and using concept maps on students achievement. eLearning & Software for Education, 2014(2), 287–293. https://doi.org/10.12753/2066-026X-14-098

  • *Kramarski, B., & Gutman, M. (2006). How can self-regulated learning be supported in mathematical E-learning environments?. Journal of Computer-Assisted Learning, 22, 24–33. https://doi.org/10.1111/j.1365-2729.2006.00157.x

    Article  Google Scholar 

  • *Kramarski, B., & Hirsch, C. (2003). Using computer algebra systems in mathematical classrooms. Journal of Computer Assisted Learning, 19, 35–45. https://doi.org/10.1046/j.0266-4909.2003.00004.x

    Article  Google Scholar 

  • *Kramarski, B., & Mizrachi, N. (2006). Online discussion and self-regulated learning: Effects of instructional methods on mathematical literacy. The Journal of Educational Research, 99, 218–231. https://doi.org/10.3200/JOER.99.4.218-231

    Article  Google Scholar 

  • *Kumar, A. N. (2002). A tutor for using dynamic memory in C++. In Frontiers in education, 2002. FIE 2002. 32nd Annual (Vol. 1, pp. 12–16). https://doi.org/10.1109/FIE.2002.1158013

  • *Kumar, A. N. (2005). Results from the evaluation of the effectiveness of an online tutor on expression evaluation. In Proceedings of the 36th SIGCSE technical symposium on computer science education (pp. 216–220). New York, NY, USA: ACM. https://doi.org/10.1145/1047344.1047422

  • *Kumar, R., Rosé, C. P., Wang, Y.-C., Joshi, M., & Robinson, A. (2007). Tutorial dialogue as adaptive collaborative learning support. In R. Luckin & K. R. Koedinger (Eds.), Proceedings of artificial intelligence in education (Vol. 158, pp. 383–390). IOS Press.

  • *Lane, H. C. (2004). Natural language tutoring and the novice programmer (PhD Thesis). University of Pittsburgh, Pittsburgh, PA, USA. Retrieved from ProQuest Dissertations & Theses Full Text. (Publication Number 3159060).

  • *Lee, Y.-J. (2010). Effects of instructional preparation strategies on problem solving in a web-based learning environment. Journal of Educational Computing Research, 42, 385–406. https://doi.org/10.2190/EC.42.4.b

    Article  Google Scholar 

  • *Lee, M., Pradhan, S., & Dalgarno, B. (2008). The effectiveness of screencasts and cognitive tools as scaffolding for novice object-oriented programmers. Journal of Information Technology Education: Research, 7, 61–80.

  • *Leemkuil, H., & de Jong, T. (2012). Adaptive advice in learning with a computer-based knowledge management simulation game. Academy of Management Learning & Education, 11, 653–665. https://doi.org/10.5465/amle.2010.0141

    Article  Google Scholar 

  • *Leutner, D. (1993). Guided discovery learning with computer-based simulation games: Effects of adaptive and non-adaptive instructional support. Learning and Instruction, 3, 113–132. https://doi.org/10.1016/0959-4752(93)90011-N

    Article  Google Scholar 

  • *Li, S. (2001). Contingent scaffolding strategies in computer-based learning environments (PhD Thesis). Indiana University, Bloomington, IN, USA. Retrieved from ProQuest Dissertations & Theses Full Text. (Publication Number 3024299).

  • *Lin, X., & Lehman, J. D. (1999). Supporting learning of variable control in a computer-based biology environment: Effects of prompting college students to reflect on their own thinking. Journal of Research in Science Teaching, 36, 837–858. https://doi.org/10.1002/(SICI)1098-2736(199909)36:7<837::AID-TEA6>3.0.CO;2-U

  • *Linn, M. C., & Eylon, B.-S. (2000). Knowledge integration and displaced volume. Journal of Science Education and Technology, 9, 287–310. https://doi.org/10.1023/A:1009451808539

    Article  Google Scholar 

  • *Liu, M.-C., Huang, Y.-M., Kinshuk, & Wen, D. (2013). Fostering learners’ metacognitive skills of keyword reformulation in image seeking by location-based hierarchical navigation. Educational Technology Research & Development, 61(2), 233–254. https://doi.org/10.1007/s11423-012-9280-3

    Article  Google Scholar 

  • *MacGregor, S. K., & Lou, Y. (2004). Web-based learning: How task scaffolding and website design support knowledge acquisition. Journal of Research on Technology in Education, 37, 161–175. https://doi.org/10.1080/15391523.2004.10782431

    Article  Google Scholar 

  • *Madsen, A., Rouinfar, A., Larson, A. M., Loschky, L. C., & Rebello, N. S. (2013). Can short duration visual cues influence students’ reasoning and eye movements in physics problems? Physical Review Special Topics - Physics Education Research, 9(2), 020104–1–020104–16. https://doi.org/10.1103/PhysRevSTPER.9.020104

  • *Manlove, S., Lazonder, A. W., & de Jong, T. (2006). Regulative support for collaborative scientific inquiry learning. Journal of Computer Assisted Learning, 22, 87–98. https://doi.org/10.1111/j.1365-2729.2006.00162.x

    Article  Google Scholar 

  • *Manlove, S., Lazonder, A. W., & de Jong, T. (2007). Software scaffolds to promote regulation during scientific inquiry learning. Metacognition and Learning, 2, 141–155. https://doi.org/10.1007/s11409-007-9012-y

    Article  Google Scholar 

  • *Marbach-Ad, G., Rotbain, Y., & Stavy, R. (2008). Using computer animation and illustration activities to improve high school students’ achievement in molecular genetics. Journal of Research in Science Teaching, 45, 273–292. https://doi.org/10.1002/tea.20222

    Article  Google Scholar 

  • *Martín-Gutiérrez, J., Gil, F. A., Contero, M., & Saorín, J. L. (2013). Dynamic three-dimensional illustrator for teaching descriptive geometry and training visualisation skills. Computer Applications in Engineering Education, 21, 8–25. https://doi.org/10.1002/cae.20447

    Article  Google Scholar 

  • *Mayer, R. E., Mautone, P., & Prothero, W. (2002). Pictorial aids for learning by doing in a multimedia geology simulation game. Journal of Educational Psychology, 94, 171–185. https://doi.org/10.1037/0022-0663.94.1.171

    Article  Google Scholar 

  • *Mendicino, M., Razzaq, L., & Heffernan, N. T. (2009). A comparison of traditional homework to computer-supported homework. Journal of Research on Technology in Education, 41, 331–359. https://doi.org/10.1080/15391523.2009.10782534

    Article  Google Scholar 

  • *Mitrovic, A., & Ohlsson, S. (1999). Evaluation of a constraint-based tutor for a database language. International Journal of Artificial Intelligence in Education, 1999, 238–256.

  • *Moreno, R., & Mayer, R. E. (2005). Role of guidance, reflection, and interactivity in an agent-based multimedia game. Journal of Educational Psychology, 97, 117–128. https://doi.org/10.1037/0022-0663.97.1.117

    Article  Google Scholar 

  • *Mulder, Y. G., Lazonder, A. W., & de Jong, T. (2011). Comparing two types of model progression in an inquiry learning environment with modelling facilities. Learning and Instruction, 21, 614–624. https://doi.org/10.1016/j.learninstruc.2011.01.003

    Article  Google Scholar 

  • *Nichols, K., Hanan, J., & Ranasinghe, M. (2011). Transforming the social practices of learning with representations: A study of disciplinary discourse. Research in Science Education, 43, 179–208. https://doi.org/10.1007/s11165-011-9263-0

    Article  Google Scholar 

  • *Osman, K., & Lee, T. T. (2013). Impact of interactive multimedia module with pedagogical agents on students’ understanding and motivation in the learning of electrochemistry. International Journal of Science and Mathematics Education, 12(2), 395–421. https://doi.org/10.1007/s10763-013-9407-y

    Article  Google Scholar 

  • *Parchman, S. W., Ellis, J. A., Christinaz, D., & Vogel, M. (2000). An evaluation of three computer-based instructional strategies in basic electricity and electronics training. Military Psychology, 12, 73–87. https://doi.org/10.1207/S15327876MP1201_4

    Article  Google Scholar 

  • *Pareto, L., Arvemo, T., Dahl, Y., Haake, M., & Gulz, A. (2011). A teachable-agent arithmetic game’s effects on mathematics understanding, attitude and self-efficacy. In Lecture Notes in Computer Science, 2011, Artificial Intelligence in Education, Vol. 6738, pp. 247–255.

  • *Pareto, L., Haake, M., Lindström, P., Sjödén, B., & Gulz, A. (2012). A teachable-agent-based game affording collaboration and competition: evaluating math comprehension and motivation. Educational Technology Research and Development, 60(5), 723–751. https://doi.org/10.1007/s11423-012-9246-5

    Article  Google Scholar 

  • *Pfahl, D., Laitenberger, O., Ruhe, G., Dorsch, J., & Krivobokova, T. (2004). Evaluating the learning effectiveness of using simulations in software project management education: results from a twice replicated experiment. Information and Software Technology, 46, 127–147. https://doi.org/10.1016/S0950-5849(03)00115-0

    Article  Google Scholar 

  • *Philpot, T. A., Hall, R. H., Hubing, N., & Flori, R. E. (2005). Using games to teach statics calculation procedures: Application and assessment. Computer Applications in Engineering Education, 13, 222–232. https://doi.org/10.1002/cae.20043

    Article  Google Scholar 

  • *Pifarré, M., Martorell, I., & Gòdia, S. (2006). Learning from the web: Analyses the incidence of an instructional approach to improve secondary students’ web performance. In Proceedings of the IADIS international conference on cognition & exploratory learning in digital age (pp. 52–59). Barcelona, Spain: International Conference on Cognition and Exploratory Learning in Digital Age.

  • *Puntambekar, S., Stylianou, A., & Hübscher, R. (2003). Improving navigation and learning in hypertext environments with navigable concept maps. Human–Computer Interaction, 18, 395–428. https://doi.org/10.1207/S15327051HCI1804_3

    Article  Google Scholar 

  • *Reid, D. J., Zhang, J., & Chen, Q. (2003). Supporting scientific discovery learning in a simulation environment. Journal of Computer Assisted Learning, 19, 9–20. https://doi.org/10.1046/j.0266-4909.2003.00002.x

    Article  Google Scholar 

  • *Renkl, A. (2002). Worked-out examples: instructional explanations support learning by self explanations. Learning and Instruction, 12, 529–556. https://doi.org/10.1016/S0959-4752(01)00030-5

    Article  Google Scholar 

  • *Revelle, G., Druin, A., Platner, M., Bederson, B., Hourcade, J. P., & Sherman, L. (2002). A visual search tool for early elementary science students. Journal of Science Education and Technology, 11, 49–57. https://doi.org/10.1023/A:1013947430933

    Article  Google Scholar 

  • *Rieber, L. P., Tzeng, S.-C., & Tribble, K. (2004). Discovery learning, representation, and explanation within a computer-based simulation: finding the right mix. Learning and Instruction, 14, 307–323. https://doi.org/10.1016/j.learninstruc.2004.06.008

    Article  Google Scholar 

  • *Rodriguez, D., Sicilia, M. A., Cuadrado-Gallego, J. J., & Pfahl, D. (2006). e-Learning in project management using simulation models: A case study based on the replication of an experiment. IEEE Transactions on Education, 49, 451–463. https://doi.org/10.1109/TE.2006.882367

    Article  Google Scholar 

  • *Ronen, M., & Eliahu, M. (2000). Simulation — a bridge between theory and reality: The case of electric circuits. Journal of Computer Assisted Learning, 16, 14–26. https://doi.org/10.1046/j.1365-2729.2000.00112.x

    Article  Google Scholar 

  • *Roschelle, J., Rafanan, K., Estrella, G., Nussbaum, M., & Claro, S. (2010). From handheld collaborative tool to effective classroom module: Embedding CSCL in a broader design framework. Computers & Education, 55, 1018–1026. https://doi.org/10.1016/j.compedu.2010.04.012

    Article  Google Scholar 

  • *Rosen, Y., & Tager, M. (2014). Making student thinking visible through a concept map in computer-based assessment of critical thinking. Journal of Educational Computing Research, 50, 249–270. https://doi.org/10.2190/EC.50.2.f

    Article  Google Scholar 

  • *Ross, J. A., & Bruce, C. D. (2009). Student achievement effects of technology-supported remediation of understanding of fractions. International Journal of Mathematical Education in Science & Technology, 40, 713–727. https://doi.org/10.1080/00207390902971999

    Article  Google Scholar 

  • *Rouinfar, A., Agra, E., Murray, J., Larson, A., Loschky, L.C., & Rebello, N.S. (2014). Influence of visual cueing on students’ eye movements while solving physics problems. In Proceedings of the symposium on eye tracking research and applications (pp. 191–194). New York: ACM.

  • *Schrader, C., & Bastiaens, T. (2012). Learning in educational computer games for novices: The impact of support provision types on virtual presence, cognitive load, and learning outcomes. International Review of Research in Open & Distance Learning, 13(3), 206–227.

  • *Segedy, J. R. (2014). Adaptive scaffolds in open-ended computer-based learning environments (PhD Thesis). Vanderbilt University, Nashville, TN, USA. Retrieved from ProQuest Dissertations & Theses Full Text. (Publication Number 3674132).

  • *Siegel, M. A. (2006). High school students’ decision making about sustainability. Environmental Education Research, 12, 201–215. https://doi.org/10.1080/13504620600689003.

    Article  Google Scholar 

  • *Siler, S., Mowery, D., Magaro, C., Willows, K., & Klahr, D. (2010). Comparison of a computer-based to hands-on lesson in experimental design. In V. Aleven, J. Kay, & J. Mostow (Eds.), Intelligent Tutoring Systems (pp. 408–410). Berlin, Germany: Springer.

  • *Simons, K. D., & Klein, J. D. (2007). The impact of scaffolding and student achievement levels in a problem-based learning environment. Instructional Science, 35, 41–72. https://doi.org/10.1007/s11251-006-9002-5

    Article  Google Scholar 

  • *Stark, D. M. (2013). Ill-structured problems, scaffolding and problem-solving ability of novice nursing students (PhD Thesis). Capella University, Minneapolis, MN, USA. Retrieved from ProQuest Dissertations & Theses Full Text. (Publication Number 3553778).

  • *Sun, C.-T., Wang, D.-Y., & Chan, H.-L. (2011). How digital scaffolds in games direct problem-solving behaviors. Computers & Education, 57, 2118–2125. https://doi.org/10.1016/j.compedu.2011.05.022

    Article  Google Scholar 

  • *Swaak, J., van Joolingen, W. R., & de Jong, T. (1998). Supporting simulation-based learning; the effects of model progression and assignments on definitional and intuitive knowledge. Learning and Instruction, 8(3), 235–252. https://doi.org/10.1016/S0959-4752(98)00018-8

    Article  Google Scholar 

  • *Tan, S. C. (2000). Supporting collaborative problem-solving through computer-supported collaborative argumentation (PhD Thesis). The Pennsylvania State University, State College, PA, USA. Retrieved from ProQuest Dissertations & Theses Full Text. (Publication Number 9982414).

  • *Teong, S. K. (2003). The effect of metacognitive training on mathematical word-problem solving. Journal of Computer Assisted Learning, 19, 46–55. https://doi.org/10.1046/j.0266-4909.2003.00005.x

    Article  Google Scholar 

  • *Thomas, J. M. (2011). Automated scaffolding of task-based learning in non-linear game environments (PhD Thesis). North Carolina State University, Raleigh, NC, USA. Retrieved from ProQuest Dissertations & Theses Full Text. (Publication Number 3463833).

  • *Toth, E. E., Suthers, D. D., & Lesgold, A. M. (2002). “Mapping to know”: The effects of representational guidance and reflective assessment on scientific inquiry. Science Education, 86, 264–286. https://doi.org/10.1002/sce.10004

    Article  Google Scholar 

  • *Ulicsak, M. H. (2004). “How did it know we weren’t talking?”: An investigation into the impact of self-assessments and feedback in a group activity. Journal of Computer Assisted Learning, 20, 205–211. https://doi.org/10.1111/j.1365-2729.2004.00083.x

    Article  Google Scholar 

  • *Van Eck, R., & Dempsey, J. (2002). The effect of competition and contextualized advisement on the transfer of mathematics skills a computer-based instructional simulation game. Educational Technology Research and Development, 50(3), 23–41. https://doi.org/10.1007/BF02505023

    Article  Google Scholar 

  • *Vanlehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., … Wintersgill, M. (2005). The Andes physics tutoring system: Lessons learned. International Journal of Artificial Intelligence in Education, 15, 147–204.

  • *Vreman de Olde, C., & de Jong, T. (2006). Scaffolding learners in designing investigation assignments for a computer simulation. Journal of Computer Assisted Learning, 22, 63–73. https://doi.org/10.1111/j.1365-2729.2006.00160.x

    Article  Google Scholar 

  • *Ward, W., Cole, R., Bolaños, D., Buchenroth-Martin, C., Svirsky, E., & Weston, T. (2013). My science tutor: A conversational multimedia virtual tutor. Journal of Educational Psychology, 105(4), 1115–1125. https://doi.org/10.1037/a0031589

    Article  Google Scholar 

  • *Weusijana, B. K. A., Riesbeck, C. K., & Walsh, J. T., Jr. (2004). Fostering reflection with Socratic tutoring software: Results of using inquiry teaching strategies with web-based HCI techniques. In Proceedings of the 6th international conference on learning sciences (pp. 561–567). Santa Monica, California: International Society of the Learning Sciences.

  • *Wiley, J., Goldman, S. R., Graesser, A. C., Sanchez, C. A., Ash, I. K., & Hemmerich, J. A. (2009). Source evaluation, comprehension, and learning in Internet science inquiry tasks. American Educational Research Journal, 46, 1060–1106. https://doi.org/10.3102/0002831209333183

    Article  Google Scholar 

  • *Woo, C. W., Evens, M. W., Freedman, R., Glass, M., Shim, L. S., Zhang, Y., … Michael, J. (2006). An intelligent tutoring system that generates a natural language dialogue using dynamic multi-level planning. Artificial Intelligence in Medicine, 38(1), 25–46. https://doi.org/10.1016/j.artmed.2005.10.004

    Article  Google Scholar 

  • *Yeh, Y.-F., Chen, M.-C., Hung, P.-H., & Hwang, G.-J. (2010). Optimal self-explanation prompt design in dynamic multi-representational learning environments. Computers & Education, 54, 1089–1100. https://doi.org/10.1016/j.compedu.2009.10.013

    Article  Google Scholar 

  • *Yin, C., Song, Y., Tabata, Y., Ogata, H., & Hwang, G.-J. (2013). Developing and implementing a framework of participatory simulation for mobile learning using scaffolding. Educational Technology & Society, 16(3), 137–150.

  • *Zacharia, Z. C. (2005). The impact of interactive computer simulations on the nature and quality of postgraduate science teachers’ explanations in physics. International Journal of Science Education, 27, 1741–1767. https://doi.org/10.1080/09500690500239664

    Article  Google Scholar 

  • *Zhang, J., Chen, Q., & Reid, D. J. (2000). Simulation-based scientific discovery learning: a research on the effects of experimental support and learners’ reasoning ability. In Proceedings of conference on educational use of information and communication technology (pp. 344–351).

  • *Zhang, J., Chen, Q., Sun, Y., & Reid, D. J. (2004). Triple scheme of learning support design for scientific discovery learning based on computer simulation: experimental research. Journal of Computer Assisted Learning, 20, 269–282. https://doi.org/10.1111/j.1365-2729.2004.00062.x

    Article  Google Scholar 

  • *Zucker, A., Kay, R., & Staudt, C. (2013). Helping students make sense of graphs: An experimental trial of SmartGraphs software. Journal of Science Education and Technology, 23, 441–457. https://doi.org/10.1007/s10956-013-9475-3

    Article  Google Scholar 

  • *Zydney, J. M. (2005). Eighth-grade students defining complex problems: The effectiveness of scaffolding in a multimedia program. Journal of Educational Multimedia & Hypermedia, 14(1), 61–90.

  • *Zydney, J. M., Bathke, A., & Hasselbring, T. S. (2014). Finding the optimal guidance for enhancing anchored instruction. Interactive Learning Environments, 22, 668–683. https://doi.org/10.1080/10494820.2012.745436

    Article  Google Scholar 

Download references

Funding

This research was partially supported by Grant ____ to the second author from____. Any opinions, findings, and or conclusions are those of the authors and do not necessarily represent official positions of _____.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Ju Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Summary of included outcomes

Study

Group size

Scaffolding for collaboration

Scaffolding intervention

Assessment level

Education level

Participants (n)

Effect size

Lower CI

Upper CI

Control group

(Hmelo and Day 1999)

individual

no

conceptual

principles

graduate/pro

35

0.82

0.12

1.49

BAU

individual

no

conceptual

principles

graduate/pro

34

0.83

0.12

1.50

BAU

(Chen et al. 2003)

pair

no

conceptual

concept

primary

43

1.06

0.41

1.67

BAU

(Mayer et al. 2002)

individual

no

conceptual

principles

C/V/T

48

0.84

0.24

1.41

BAU

individual

no

conceptual

principles

C/V/T

94

0.68

0.22

1.12

BAU

individual

no

strategic

principles

C/V/T

95

0.47

0.03

0.91

BAU

individual

no

conceptual

principles

C/V/T

73

0.85

0.37

1.32

BAU

(Chang et al. 2001)

individual

no

conceptual

concept

middle

32

0.4

− 0.30

1.08

WOS

individual

no

conceptual

concept

middle

33

0.25

− 0.43

0.92

WOS

(Linn and Eylon 2000)

small

no

conceptual

principles

middle

144

0.53

0.18

0.87

WOS

small

no

conceptual

principles

middle

144

0.36

0.02

0.70

WOS

small

no

conceptual

principles

middle

144

0.32

− 0.03

0.66

WOS

(MacGregor and Lou 2004)

individual

no

conceptual

concept

primary

22

0.94

0.03

1.79

WOS

individual

no

conceptual

concept

primary

22

1.22

0.27

2.08

WOS

(Revelle et al. 2002)

pair

no

strategic

application

primary

99

0.77

0.36

1.17

WOS

pair

no

strategic

application

primary

96

0.79

0.37

1.20

WOS

(Lane 2004)

individual

no

strategic

application

C/V/T

21

0.91

− 0.02

1.76

BAU

(Puntambekar et al. 2003)

individual

no

conceptual

principles

middle

36

0.82

0.13

1.47

WOS

individual

no

conceptual

concept

middle

32

0.52

− 0.19

1.21

WOS

individual

no

conceptual

concept

middle

36

− 0.4

− 1.05

0.26

WOS

(Zhang et al. 2004)

individual

no

strategic

concept

middle

80

− 0.16

− 0.60

0.28

WOS

individual

no

strategic

principles

middle

80

− 0.34

− 0.77

0.10

WOS

individual

no

strategic

application

middle

80

− 0.1

− 0.53

0.34

WOS

individual

no

strategic

concept

middle

30

− 0.35

− 1.06

0.37

WOS

individual

no

strategic

principles

middle

30

− 0.21

− 0.91

0.51

WOS

individual

no

strategic

application

middle

30

0.06

− 0.65

0.76

WOS

individual

no

strategic

principles

middle

30

0.87

0.11

1.59

WOS

individual

no

strategic

principles

middle

30

0.64

− 0.10

1.35

WOS

(Ulicsak 2004)

pair

collaboration

strategic

concept

primary

51

0.21

− 0.34

0.75

BAU

pair

collaboration

strategic

concept

primary

51

0.13

− 0.42

0.67

BAU

pair

collaboration

strategic

concept

primary

51

0.13

− 0.42

0.67

BAU

pair

collaboration

strategic

concept

primary

51

0.41

− 0.14

0.96

BAU

pair

collaboration

strategic

concept

primary

51

0.22

− 0.33

0.76

BAU

(Vreman de Olde and de Jong 2006)

individual

no

strategic

application

secondary

35

0.77

0.04

1.46

WOS

(Zydney 2005)

individual

no

conceptual

principles

middle

30

1.01

0.24

1.74

WOS

individual

no

metacognitive

principles

middle

30

0.19

− 0.53

0.89

WOS

individual

no

conceptual

principles

middle

30

0.75

0.00

1.46

WOS

individual

no

metacognitive

principles

middle

30

0.82

0.06

1.53

WOS

individual

no

conceptual

principles

middle

30

0.6

− 0.14

1.30

WOS

individual

no

metacognitive

principles

middle

30

− 0.01

− 0.71

0.70

WOS

(Siegel 2006)

individual

no

strategic

principles

secondary

47

0.43

− 0.16

1.01

WOS

(Manlove et al. 2007)

pair

no

conceptual

principles

secondary

35

− 1.26

− 1.95

− 0.51

WOS

pair

no

conceptual

concept

secondary

35

1.62

0.82

2.35

WOS

(Fund 2007)

individual

no

conceptual

principles

middle

154

0.95

0.61

1.28

WOS

individual

no

strategic

principles

middle

147

0.67

0.34

1.00

WOS

individual

no

conceptual

principles

middle

151

0.65

0.32

0.97

WOS

individual

no

conceptual

principles

middle

165

0.21

− 0.10

0.51

WOS

individual

no

conceptual

principles

middle

154

1.14

0.80

1.48

WOS

individual

no

strategic

principles

middle

147

0.91

0.57

1.25

WOS

individual

no

conceptual

principles

middle

151

0.67

0.34

1.00

WOS

individual

no

conceptual

principles

middle

165

0.29

− 0.02

0.59

WOS

(Graesser et al. 2007)

individual

no

conceptual

concept

C/V/T

33

0.16

− 0.52

0.83

WOS

individual

no

conceptual

concept

C/V/T

33

− 0.36

− 1.03

0.33

WOS

(Koenig 2008a, 2008b)

individual

no

motivational

concept

adult

38

0.87

0.20

1.52

WOS

(Su 2008)

small

collaboration

conceptual

application

C/V/T

65

− 0.11

− 0.60

0.37

WOS

small

collaboration

conceptual

application

C/V/T

63

− 0.17

− 0.66

0.33

WOS

small

collaboration

conceptual

concept

C/V/T

216

0.15

− 0.12

0.41

WOS

small

collaboration

conceptual

concept

C/V/T

208

0.24

− 0.04

0.51

WOS

(Etheris and Tan 2004)

small

collaboration

strategic

application

middle

9

0.67

− 0.68

1.86

WOS

(Tan et al. 2005)

large

collaboration

strategic

principles

middle

68

0.61

0.12

1.09

WOS

large

collaboration

strategic

principles

middle

68

0.7

0.20

1.18

WOS

large

collaboration

strategic

principles

middle

68

0.36

− 0.12

0.83

WOS

(Demetriadis et al. 2008)

individual

no

conceptual

concept

C/V/T

32

0.74

0.02

1.43

WOS

individual

no

conceptual

concept

C/V/T

32

0.86

0.12

1.55

WOS

(Belland 2009)

small

collaboration

strategic

application

middle

37

− 0.25

− 0.90

0.41

WAS

small

collaboration

strategic

application

middle

49

− 0.09

− 0.65

0.47

WAS

(Pifarré et al. 2006)

pair

no

strategic

principles

middle

89

0.63

0.20

1.05

BAU

(Simons and Klein 2007)

small

no

conceptual

application

middle

70

0.82

0.30

1.33

WOS

small

no

conceptual

application

middle

64

0.99

0.45

1.52

WOS

small

no

conceptual

principles

middle

70

0.64

0.13

1.14

WOS

small

no

conceptual

principles

middle

64

0.36

− 0.16

0.87

WOS

(Lee et al. 2008)

individual

no

conceptual

principles

G/P

38

− 0.27

− 0.90

0.36

WOS

(Zydney 2008)

individual

no

conceptual

principles

secondary

41

0.47

− 0.15

1.08

WOS

individual

no

conceptual

principles

secondary

39

0

− 0.62

0.62

WOS

individual

no

conceptual

principles

secondary

41

0.43

− 0.19

1.04

WOS

individual

no

conceptual

concept

secondary

40

0.03

− 0.58

0.64

WOS

individual

no

conceptual

concept

secondary

38

0.52

− 0.13

1.15

WOS

individual

no

conceptual

concept

secondary

40

0.03

− 0.59

0.64

WOS

individual

no

conceptual

concept

secondary

41

− 0.18

− 0.78

0.43

WOS

individual

no

conceptual

concept

secondary

39

− 0.03

− 0.65

0.60

WOS

individual

no

conceptual

concept

secondary

41

0.03

− 0.57

0.64

WOS

(Looi and Lim 2009)

pair

no

conceptual

principles

middle

68

1.07

0.55

1.56

BAU

(Yeh et al. 2010)

individual

no

conceptual

principles

C/V/T

163

1.56

1.21

1.91

WOS

individual

no

conceptual

principles

C/V/T

162

1.38

1.03

1.72

WOS

(Mendicino et al. 2009)

individual

no

strategic

concept

primary

56

0.62

0.08

1.15

WOS

(Gijlers 2005)

pair

collaboration

conceptual

principles

secondary

44

0.69

0.08

1.28

BAU

pair

collaboration

conceptual

concept

secondary

44

0.61

0.00

1.20

BAU

pair

collaboration

conceptual

principles

secondary

44

− 0.15

− 0.73

0.44

BAU

pair

collaboration

conceptual

concept

secondary

44

− 0.27

− 0.85

0.32

BAU

pair

collaboration

strategic

principles

secondary

24

0.38

− 0.42

1.16

WOS

pair

collaboration

strategic

concept

secondary

24

− 0.49

− 1.27

0.32

WOS

pair

collaboration

strategic

principles

secondary

24

0.73

− 0.11

1.52

WOS

(Ross and Bruce 2009)

individual

no

conceptual

principles

middle

178

0.27

− 0.03

0.56

BAU

individual

no

conceptual

principles

middle

217

0.08

− 0.27

0.42

BAU

(Kajamies et al. 2010)

pair

no

strategic

principles

primary

16

0.7

− 0.32

1.64

BAU

pair

no

strategic

principles

primary

16

0.58

− 0.42

1.52

BAU

pair

no

strategic

principles

primary

16

0.78

− 0.25

1.73

WOS

pair

no

strategic

principles

primary

16

0.51

− 0.49

1.45

WOS

(Sun et al. 2011)

individual

no

strategic

concept

middle

46

0.32

− 0.26

0.89

WOS

(Toth et al. 2002)

small

collaboration

strategic

concept

secondary

10

1.06

− 0.30

2.21

WOS

small

collaboration

metacognitive

concept

secondary

10

− 1.03

− 2.19

0.32

WOS

(Yoon et al. 2012)

triad

collaboration

conceptual

concept

middle

119

0.16

− 0.34

0.66

WOS

triad

collaboration

conceptual

principles

middle

34

0.93

0.21

1.61

WOS

(Reid et al. 2003)

individual

no

conceptual

principles

middle

38

− 0.35

− 0.98

0.29

WOS

individual

no

conceptual

concept

middle

38

− 0.32

− 0.95

0.32

WOS

individual

no

conceptual

application

middle

38

− 0.03

− 0.66

0.60

WOS

individual

no

strategic

concept

middle

38

0.08

− 0.55

0.71

WOS

individual

no

strategic

application

middle

38

0.75

0.08

1.38

WOS

individual

no

strategic

principles

middle

38

0.59

− 0.07

1.22

WOS

individual

no

strategic

concept

middle

38

0.38

− 0.27

1.01

WOS

individual

no

strategic

principles

middle

38

0.6

− 0.05

1.23

WOS

individual

no

strategic

application

middle

38

0.53

− 0.12

1.16

WOS

(Ward et al. 2013)

individual

no

conceptual

concept

primary

1098

0.18

− 0.05

0.40

BAU

(Clark et al. 2012)

individual

no

conceptual

concept

middle

50

0.41

− 0.15

0.96

WAS

individual

no

conceptual

concept

middle

50

0.59

0.02

1.15

WAS

individual

no

conceptual

application

middle

50

0.52

− 0.05

1.07

WAS

(Raes et al. 2012)

pair

no

conceptual

concept

secondary

135

0.02

− 0.32

0.36

WOS

(Liu et al. 2013)

individual

no

conceptual

concept

secondary

128

1.37

0.97

1.74

WOS

(Stark 2013)

individual

no

conceptual

principles

C/V/T

42

0.13

− 0.50

0.77

WOS

individual

no

conceptual

principles

C/V/T

37

− 0.78

− 1.44

− 0.08

WOS

(Tan 2000)

small

collaboration

strategic

application

C/V/T

53

− 0.2

− 0.75

0.36

WOS

small

collaboration

strategic

application

C/V/T

53

0.35

− 0.21

0.90

WOS

(Li 2001)

individual

no

conceptual

principles

C/V/T

36

0.93

0.23

1.59

WOS

individual

no

conceptual

principles

C/V/T

36

0.1

− 0.55

0.74

WOS

individual

no

conceptual

principles

C/V/T

35

1.17

0.43

1.85

WOS

individual

no

conceptual

principles

C/V/T

35

0.24

− 0.42

0.89

WOS

individual

no

conceptual

principles

C/V/T

36

0.6

− 0.07

1.25

WOS

individual

no

conceptual

principles

C/V/T

36

− 0.21

− 0.85

0.44

WOS

(Chu et al. 2010)

individual

no

conceptual

concept

primary

13

1.72

0.37

2.83

BAU

(Ge et al. 2010)

small

collaboration

conceptual

principles

C/V/T

96

1.83

1.34

2.29

WOS

(Ching 2009)

individual

no

strategic

principles

C/V/T

49

0.33

− 0.24

0.88

WOS

individual

no

metacognitive

principles

C/V/T

50

0.21

− 0.35

0.76

WOS

individual

no

strategic

principles

C/V/T

50

0.53

− 0.04

1.08

WOS

(Thomas 2011)

individual

no

strategic

concept

G/P

18

0.85

− 0.13

1.75

WOS

individual

no

strategic

concept

G/P

20

2.29

1.09

3.29

BAU

(Ruzhitskaya 2011)

pair

no

conceptual

concept

C/V/T

132

0.39

0.04

0.73

BAU

pair

no

conceptual

concept

C/V/T

131

0.44

0.10

0.79

BAU

(Clarebout and Elen 2006)

individual

no

strategic

application

C/V/T

128

0.48

0.13

0.83

WOS

individual

no

strategic

application

C/V/T

121

0.33

− 0.03

0.68

WOS

(Chen et al. 2005)

pair

no

conceptual

concept

primary

12

1.9

0.44

3.06

WOS

(Barab et al. 2009)

pair

no

conceptual

concept

C/V/T

25

1.38

0.48

2.19

WOS

pair

no

conceptual

application

C/V/T

25

1.53

0.60

2.35

WOS

(Hickey et al. (2008)

individual

no

conceptual

concept

C/V/T

26

0.93

0.10

1.70

WOS

individual

no

conceptual

application

C/V/T

26

0.51

− 0.28

1.26

WOS

(Lee 2010)

triad

no

conceptual

concept

C/V/T

247

0.73

0.47

0.98

WOS

triad

no

conceptual

concept

C/V/T

248

0.48

0.22

0.73

WOS

triad

no

conceptual

concept

C/V/T

248

0.37

0.12

0.62

WOS

(Su and Klein 2010)

small

collaboration

conceptual

concept

C/V/T

109

0.14

− 0.23

0.52

WOS

small

collaboration

conceptual

concept

C/V/T

99

0.33

− 0.08

0.72

WOS

small

collaboration

metacognitive

concept

C/V/T

104

0.05

− 0.34

0.43

WOS

small

collaboration

metacognitive

concept

C/V/T

112

− 0.34

− 0.71

0.03

WOS

small

collaboration

conceptual

principles

C/V/T

63

− 0.71

− 1.20

− 0.19

WOS

small

collaboration

metacognitive

principles

C/V/T

65

− 0.12

− 0.60

0.37

WOS

(Schrader and Bastiaens 2012)

individual

no

conceptual

concept

middle

59

1.17

0.61

1.71

WOS

individual

no

conceptual

principles

middle

59

0.95

0.40

1.47

WOS

(Chen et al. 2013)

individual

no

conceptual

concept

C/V/T

28

0.83

0.02

1.60

BAU

(Holland 2009)

individual

no

conceptual

principles

C/V/T

35

− 0.04

− 0.72

0.64

WOS

(Kumar 2005)

individual

no

conceptual

concept

C/V/T

64

0.26

− 0.23

0.75

WOS

individual

no

conceptual

concept

C/V/T

48

0.48

− 0.10

1.04

WOS

(Bornas and Llabrés 2001)

individual

no

conceptual

concept

primary

30

0.71

0.50

0.92

BAU

(Barak and Dori 2005)

individual

no

conceptual

concept

C/V/T

215

0.68

0.40

0.95

BAU

(Ronen and Eliahu 2000)

pair

no

conceptual

application

secondary

42

1.64

0.87

2.35

BAU

pair

no

conceptual

application

secondary

34

1.04

0.29

1.74

BAU

(Deters 2008)

individual

no

metacognitive

application

secondary

51

0.33

− 0.22

0.88

WOS

individual

no

metacognitive

application

secondary

52

0.34

− 0.22

0.88

WOS

(Conati and Vanlehn 2000)

individual

no

metacognitive

principles

C/V/T

56

0.1

− 0.42

0.62

WOS

(Dori and Belcher 2005)

triad

collaboration

conceptual

concept

C/V/T

811

0.55

0.35

0.74

BAU

(Kaberman and Dori 2009)

individual

no

strategic

application

secondary

241

0.64

0.33

0.94

WOS

individual

no

strategic

application

secondary

176

0.58

0.27

0.88

WOS

(Dori and Sasson 2008)

individual

no

conceptual

principles

secondary

661

0.84

0.57

1.10

WOS

(Nichols et al. 2011)

triad

collaboration

conceptual

principles

C/V/T

269

− 0.07

− 0.31

0.17

WOS

triad

collaboration

conceptual

principles

C/V/T

254

− 0.15

− 0.40

0.10

WOS

triad

collaboration

conceptual

concept

C/V/T

254

0.24

− 0.01

0.49

WOS

triad

collaboration

conceptual

concept

C/V/T

269

0.15

− 0.09

0.39

WOS

(Leutner 1993)

individual

no

conceptual

concept

middle

32

0.63

− 0.09

1.32

WOS

individual

no

conceptual

principles

middle

32

− 0.99

− 1.69

− 0.24

WOS

individual

no

conceptual

concept

C/V/T

38

0.84

0.16

1.48

WOS

individual

no

conceptual

principles

C/V/T

38

− 0.56

− 1.19

0.09

WOS

individual

no

conceptual

concept

middle

40

0.23

− 0.39

0.84

WOS

individual

no

conceptual

principles

middle

40

0.19

− 0.43

0.80

WOS

individual

no

conceptual

concept

middle

40

0.19

− 0.42

0.81

WOS

individual

no

conceptual

principles

middle

40

− 0.17

− 0.78

0.45

WOS

individual

no

conceptual

concept

middle

32

− 0.01

− 0.69

0.68

WOS

individual

no

conceptual

concept

middle

40

0.27

− 0.35

0.88

WOS

individual

no

conceptual

principles

middle

32

0.36

− 0.34

1.04

WOS

individual

no

conceptual

concept

middle

40

0.1

− 0.51

0.71

WOS

(Vanlehn et al. 2005)

individual

no

conceptual

principles

C/V/T

912

0.25

0.03

0.47

BAU

individual

no

conceptual

application

C/V/T

1066

0.5

0.38

0.62

BAU

(Parchman et al. 2000)

individual

no

conceptual

concept

C/V/T

37

0.49

− 0.19

1.16

BAU

individual

no

conceptual

principles

C/V/T

37

0.14

− 0.53

0.80

BAU

individual

no

conceptual

concept

C/V/T

47

0.27

− 0.30

0.84

BAU

individual

no

conceptual

principles

C/V/T

47

0.3

− 0.27

0.87

BAU

(Renkl 2002)

individual

no

conceptual

principles

C/V/T

48

0.5

− 0.09

1.07

WAS

(Rieber et al. 2004)

individual

no

conceptual

principles

C/V/T

26

1.61

0.68

2.42

WOS

(Wiley et al. 2009)

individual

no

conceptual

principles

C/V/T

60

0.51

− 0.01

1.02

WOS

individual

no

conceptual

concept

C/V/T

60

0.63

0.11

1.14

WOS

individual

no

conceptual

principles

C/V/T

60

1.05

0.50

1.57

WOS

individual

no

conceptual

principles

C/V/T

60

0.77

0.24

1.29

WOS

individual

no

conceptual

principles

C/V/T

60

0.74

0.21

1.25

WOS

(Ardac and Akaygun 2004)

individual

no

conceptual

concept

middle

49

0.88

0.25

1.48

BAU

(Chang et al. 2010)

small

collaboration

conceptual

concept

middle

110

0.47

0.08

0.85

WOS

small

collaboration

conceptual

principles

middle

110

0.63

0.24

1.01

WOS

small

collaboration

conceptual

concept

middle

114

− 0.49

− 0.87

− 0.11

WOS

small

collaboration

conceptual

principles

middle

114

− 0.2

− 0.57

0.18

WOS

(Frailich et al. 2009)

triad

collaboration

conceptual

concept

secondary

233

0.76

0.48

1.03

BAU

(Hundhausen et al. 2011)

individual

no

conceptual

principles

C/V/T

21

− 0.22

− 1.05

0.63

WOS

(Dori et al. 2003)

individual

no

conceptual

principles

C/V/T

215

1.03

0.74

1.31

BAU

(Finkelstein et al. 2005)

small

no

conceptual

principles

C/V/T

231

0.43

0.17

0.70

WOS

small

no

conceptual

principles

C/V/T

231

0.25

− 0.02

0.51

WOS

(Adair and Jaeger 2014)

individual

no

strategic

concept

C/V/T

81

0.68

0.22

1.12

BAU

individual

no

strategic

principles

C/V/T

81

0.13

− 0.31

0.56

BAU

(Mitrovic and Ohlsson 1999)

individual

no

conceptual

concept

C/V/T

46

0.75

0.14

1.33

BAU

(Huang et al. 2013)

individual

no

conceptual

principles

C/V/T

86

0.54

0.11

0.96

WOS

(Martín-Gutiérrez et al. 2013)

individual

no

conceptual

principles

C/V/T

40

0.22

− 0.40

0.84

BAU

individual

no

conceptual

principles

C/V/T

40

0.09

− 0.53

0.70

BAU

(Aydin and Cagiltay 2012)

large

no

conceptual

principles

C/V/T

112

1.43

1.00

1.84

WOS

(Katai 2011)

individual

no

conceptual

principles

C/V/T

43

1.06

0.40

1.67

BAU

(Van Eck and Dempsey 2002)

individual

no

conceptual

principles

middle

35

0.66

− 0.03

1.32

WOS

individual

no

conceptual

principles

middle

35

0.2

− 0.46

0.86

WOS

(Rodriguez et al. 2006)

individual

no

conceptual

concept

C/V/T

11

1.09

− 0.22

2.21

WOS

individual

no

conceptual

principles

C/V/T

11

0.67

− 0.55

1.78

WOS

individual

no

conceptual

principles

C/V/T

11

0.92

− 0.36

2.03

WOS

(Pfahl et al. 2004)

individual

no

strategic

concept

graduate/pro

34

0.63

− 0.06

1.30

WOS

individual

no

strategic

principles

graduate/pro

34

0.08

− 0.58

0.75

WOS

(Hwang et al. 2010)

individual

no

conceptual

concept

primary

45

0.34

− 0.25

0.91

WOS

(Roschelle et al. 2010a, Roschelle et al. 2010b, Roschelle et al. 2010)

triad

collaboration

conceptual

concept

primary

158

0.32

0.01

0.63

WOS

(Marbach-Ad et al. 2008)

individual

no

conceptual

concept

secondary

132

0.22

− 0.13

0.56

WOS

individual

no

conceptual

principles

secondary

132

0.56

0.21

0.91

WOS

individual

no

conceptual

concept

secondary

132

0.7

0.35

1.05

BAU

individual

no

conceptual

principles

secondary

132

1.92

1.49

2.32

BAU

(Pareto et al. 2011)

individual

no

metacognitive

concept

primary

153

0.38

0.05

0.70

BAU

(Hwang and Hu 2013)

small

collaboration

conceptual

principles

primary

58

0.59

0.06

1.10

WOS

(Hulshof and de Jong 2006)

individual

no

conceptual

concept

C/V/T

25

0.61

− 0.20

1.39

WOS

(Swaak et al. 1998)

individual

no

conceptual

concept

C/V/T

42

0.1

− 0.50

0.69

WOS

individual

no

conceptual

principles

C/V/T

42

0.77

0.14

1.38

WOS

(Manlove et al. 2006)

triad

collaboration

conceptual

principles

secondary

17

0.92

− 0.10

1.85

WOS

(Ardac and Sezen 2002)

individual

no

conceptual

concept

secondary

39

0.66

0.01

1.29

BAU

individual

no

conceptual

principles

secondary

43

0.13

− 0.47

0.72

BAU

(Zhang et al. 2000)

individual

no

conceptual

concept

middle

26

− 0.08

− 0.84

0.67

WOS

individual

no

conceptual

principles

middle

26

− 0.45

− 1.20

0.33

WOS

individual

no

conceptual

application

middle

26

− 0.18

− 0.93

0.59

WOS

individual

no

conceptual

concept

middle

26

− 0.75

− 1.51

0.06

WOS

individual

no

conceptual

principles

middle

26

− 0.29

− 1.04

0.48

WOS

individual

no

conceptual

application

middle

26

0.21

− 0.55

0.97

WOS

individual

no

conceptual

concept

middle

26

0.65

− 0.15

1.41

WOS

individual

no

conceptual

principles

middle

26

0

− 0.76

0.76

WOS

individual

no

conceptual

application

middle

26

− 0.11

− 0.87

0.65

WOS

individual

no

conceptual

application

middle

26

− 0.23

− 0.98

0.54

WOS

individual

no

conceptual

application

middle

26

− 0.12

− 0.87

0.64

WOS

individual

no

conceptual

application

middle

26

− 0.03

− 0.79

0.73

WOS

(Leemkuil and de Jong 2012

individual

no

conceptual

concept

C/V/T

194

0.05

− 0.23

0.33

WOS

individual

no

conceptual

principles

C/V/T

194

0.22

− 0.06

0.50

WOS

(Mulder et al. 2011)

individual

no

conceptual

concept

secondary

58

0.02

− 0.49

0.53

WOS

individual

no

conceptual

principles

secondary

58

1.05

0.49

1.58

WOS

individual

no

conceptual

concept

secondary

56

0.31

− 0.22

0.83

WOS

individual

no

conceptual

principles

secondary

56

0.07

− 0.45

0.59

WOS

(Atkinson et al. 2003)

individual

no

strategic

principles

C/V/T

39

0.93

0.26

1.57

WOS

individual

no

strategic

principles

C/V/T

39

0.31

− 0.33

0.92

WOS

individual

no

strategic

principles

C/V/T

39

0.74

0.08

1.37

WOS

(Hundhausen and Brown 2008)

pair

collaboration

conceptual

principles

C/V/T

79

0.47

0.02

0.91

WAS

(Kramarski and Hirsch 2003)

individual

no

metacognitive

principles

middle

43

0.95

0.31

1.56

WOS

(Teong 2003)

pair

no

metacognitive

principles

middle

40

0.59

− 0.05

1.20

WOS

pair

no

metacognitive

principles

middle

40

0.74

0.09

1.36

WOS

(Kramarski and Gutman 2006)

pair

no

metacognitive

concept

secondary

65

0.51

0.01

0.99

WOS

pair

no

metacognitive

application

secondary

65

0.84

0.33

1.34

WOS

pair

collaboration

metacognitive

principles

middle

43

1.95

1.20

2.64

WOS

pair

collaboration

metacognitive

concept

middle

43

1.39

0.70

2.02

WOS

(Zydney et al. 2014)

individual

no

conceptual

concept

primary

30

0.54

− 0.19

1.25

WOS

(Galleto and Refugio 2012)

individual

no

conceptual

principles

C/V/T

95

0.48

0.07

0.88

BAU

(Kong 2011)

individual

no

conceptual

concept

G/P

68

0.51

0.01

0.99

BAU

(Graesser et al. 2003)

individual

no

conceptual

concept

C/V/T

48

1.56

0.86

2.20

BAU

(Pareto et al. 2012)

pair

collaboration

conceptual

concept

primary

38

0.76

0.10

1.40

BAU

(Chin et al. 2013)

individual

no

conceptual

concept

primary

133

0.97

0.57

1.36

WOS

(Hwang et al. 2012)

individual

no

conceptual

concept

primary

43

0.64

0.02

1.24

WOS

(Corbett and Anderson 2001)

individual

no

strategic

principles

C/V/T

20

0.73

− 0.19

1.59

WOS

individual

no

strategic

principles

C/V/T

20

0.95

0.01

1.82

WOS

individual

no

strategic

principles

C/V/T

20

1.14

0.16

2.01

WOS

individual

no

strategic

concept

C/V/T

20

0.58

− 0.32

1.43

WOS

individual

no

strategic

concept

C/V/T

20

0.79

− 0.13

1.65

WOS

individual

no

strategic

concept

C/V/T

20

0.9

− 0.04

1.76

WOS

(Girault and d’Ham 2013)

individual

no

strategic

concept

C/V/T

23

0.59

− 0.27

1.40

WOS

(Korganci et al. 2014)

individual

no

conceptual

concept

secondary

30

1.7

0.83

2.47

WOS

individual

no

conceptual

concept

secondary

32

0.75

0.02

1.44

WOS

(Zucker et al. 2013)

small

no

conceptual

principles

middle level

781

0.28

0.14

0.42

BAU

(Reif and Scott 1999)

individual

no

conceptual

application

C/V/T

30

1.33

0.51

2.08

BAU

(Hung et al. 2013)

individual

no

conceptual

principles

middle

49

0.62

0.04

1.18

WOS

(Ifenthaler 2012)

individual

no

metacognitive

concept

C/V/T

58

0.83

0.29

1.36

WOS

individual

no

metacognitive

concept

C/V/T

66

− 0.02

− 0.51

0.47

WOS

individual

no

metacognitive

principles

C/V/T

58

0.52

− 0.01

1.04

WOS

individual

no

metacognitive

principles

C/V/T

66

− 0.19

− 0.68

0.30

WOS

(Yin et al. 2013)

small

collaboration

conceptual

concept

G/P

41

1.07

0.40

1.70

WOS

(Osman and Lee 2013)

individual

no

strategic

principles

secondary

127

0.52

0.17

0.87

BAU

(Moreno and Mayer 2005)

individual

no

conceptual

concept

C/V/T

54

0.32

− 0.22

0.86

WOS

individual

no

conceptual

principles

C/V/T

54

1.19

0.60

1.76

WOS

(Kereluik 2013)

individual

no

metacognitive

principles

secondary

45

0.07

− 0.54

0.69

WOS

(Butz et al. 2006)

individual

no

conceptual

principles

C/V/T

39

0.97

0.30

1.61

BAU

individual

no

conceptual

principles

C/V/T

39

1.31

0.59

1.97

BAU

(Philpot et al. 2005)

individual

no

conceptual

principles

C/V/T

114

0.64

0.17

1.10

BAU

individual

no

conceptual

principles

C/V/T

78

0.8

0.29

1.29

BAU

(Segedy 2014)

individual

no

conceptual

concept

middle

65

0.01

− 0.47

0.50

WOS

(Kinnebrew et al. 2014)

individual

no

strategic

principles

middle

35

0.15

− 0.52

0.81

WOS

individual

no

metacognitive

principles

middle

32

0.71

− 0.02

1.40

WOS

individual

no

strategic

principles

middle

35

0.18

− 0.48

0.84

WOS

individual

no

metacognitive

principles

middle

32

0.06

− 0.63

0.75

WOS

(Hwang et al. 2014)

individual

no

conceptual

concept

middle

66

0.65

0.15

1.14

WOS

Rosen and Tager 2014)

individual

no

strategic

principles

secondary

190

0.65

0.35

0.94

WOS

(Chen 2014)

individual

no

conceptual

principles

middle

170

0.94

0.62

1.25

WOS

individual

no

conceptual

principles

middle

170

− 0.16

− 0.46

0.14

WOS

individual

no

conceptual

principles

middle

170

1.47

1.12

1.80

WOS

(Zacharia 2005)

triad

no

conceptual

concept

C/V/T

88

0.69

0.26

1.12

WOS

triad

no

conceptual

principles

C/V/T

88

0.79

0.35

1.22

WOS

(Rouinfar et al. 2014)

individual

no

conceptual

principles

C/V/T

80

0.74

0.28

1.18

WOS

(Madsen et al. 2013)

individual

no

conceptual

principles

C/V/T

37

0.69

0.02

1.33

WOS

(Siler et al. 2010)

individual

no

strategic

principles

middle

28

0.8

0.02

1.53

BAU

individual

no

strategic

principles

middle

25

0.84

0.01

1.62

BAU

Woo et al. 2006)

individual

no

conceptual

concept

G/P

50

− 0.48

− 1.03

0.09

BAU

individual

no

conceptual

principles

G/P

50

1.22

0.60

1.80

BAU

(Weusijana et al. 2004)

triad

collaboration

strategic

concept

C/V/T

54

0.55

0.00

1.08

WOS

(Koedinger et al. 1997)

small

no

conceptual

principles

secondary

169

0.66

0.30

1.01

BAU

(Koedinger et al. 1997)

small

no

conceptual

concept

secondary

169

0.32

− 0.03

0.67

BAU

(Lin and Lehman 1999)

individual

no

metacognitive

principles

C/V/T

45

0.6

− 0.01

1.18

WOS

individual

no

conceptual

principles

C/V/T

45

0.1

− 0.49

0.68

WOS

individual

no

motivational

principles

C/V/T

45

0.06

− 0.52

0.64

WOS

individual

no

metacognitive

application

C/V/T

45

1.41

0.74

2.04

WOS

individual

no

conceptual

application

C/V/T

45

0.6

0.00

1.19

WOS

individual

no

motivational

application

C/V/T

46

0.4

− 0.19

0.97

WOS

(Kumar et al. 2007)

pair

collaboration

conceptual

principles

C/V/T

58

0.6

0.07

1.11

WOS

(Ge and Land 2003)

small

no

conceptual

principles

C/V/T

24

1.77

0.78

2.64

WOS

small

no

conceptual

principles

C/V/T

31

1.21

0.43

1.94

WOS

(Dancik and Kumar 2003)

individual

no

conceptual

principles

C/V/T

47

0.59

0.00

1.16

BAU

Kumar 2002)

individual

no

conceptual

concept

C/V/T

33

− 0.16

− 0.83

0.52

BAU

(Beal et al. 2010)

individual

no

conceptual

concept

middle

23

0.71

− 0.21

1.58

BAU

individual

no

conceptual

concept

middle

32

− 0.28

− 1.10

0.56

BAU

  1. The following acronyms are used: graduate/professional (G/P); college/vocational/technical (C/V/T); business as usual (BAU); problem solving without scaffolding (WOS); problem solving with scaffolding (WAS)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, N.J., Belland, B.R., Lefler, M. et al. Computer-Based Scaffolding Targeting Individual Versus Groups in Problem-Centered Instruction for STEM Education: Meta-analysis. Educ Psychol Rev 32, 415–461 (2020). https://doi.org/10.1007/s10648-019-09502-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10648-019-09502-3

Keywords

Navigation