[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Evaluation of arsenic induced toxicity based on arsenic accumulation, translocation and its implications on physio-chemical changes and genomic instability in indica rice (Oryza sativa L.) cultivars

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Arsenic (As) accumulation in rice is a principal route of As exposure for rice based population. We have tested physiochemical and molecular parameters together to identify low As accumulating rice cultivars with normal growth and vigor. The present study examined potential toxicity caused by arsenate (AsV) among four rice cultivars tested that varied with respect to accumulation of total arsenic, arsenite (AsIII) and their differential translocation rate which had deleterious impact on growth and metabolism. Intracellular homeostasis of rice cultivars viz., TN-1, IR-64, IR-20 and Tulaipanji was hampered by 21 days long As(V) treatment due to generation of reactive oxygen species (ROS) and inadequate activity of catalase (CAT; EC 1.11.1.6). Upregulation of oxidative stress markers viz., H2O2, proline and MDA along with alteration in enzymatic antioxidants profile were conspicuously pronounced in cv. Tulaipanji while cv. TN-1 was least affected under As(V) challenged environment. In addition to that genomic template stability and band sharing indices were qualitatively measured by DNA profiling of all tested cultivars treated with 25 μM, 50 μM, and 75 μM As(V). In rice cv. Tulaipanji genetic polymorphism was significantly detected with the application of random amplified polymorphic DNA (RAPD) tool and characterized as susceptible cultivar of As compared to cvs. TN-1, IR-64 and IR-20 that is in correlation with data obtained from cluster analysis. Hence, identified As tolerant cultivars viz., TN-1, IR64 and IR-20 especially TN-1 could be used in As contaminated agricultural field after appropriate field trial. This study could help to gather information regarding cultivar-specific tolerance strategy to avoid pollutant induced toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abdel-Lateef AM, Mohamed RA, Mahmoud HH (2013) Determination of arsenic (III) and (V) species in some environmental samples by atomic absorption spectrometry. Adv Chem Sci 2(4):110–113. ACS02524110113

    Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    CAS  Google Scholar 

  • Agami RA (2014) Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biol Plant 58:341–347. https://doi.org/10.1007/s10535-014-0392-y

    Article  CAS  Google Scholar 

  • Agarwal S, Khan S (2016) Sodium fluoride (NaF) induced changes in growth and DNA profile of Vigna radiata. Plant Sci Today 3:1–5

    CAS  Google Scholar 

  • Ahmed ZU, Panaullah GM, Gauch H, McCouch SR, Tyagi W, Kabir MS, Duxbury JM (2011) Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant Soil 338:367–382

    CAS  Google Scholar 

  • Andronis EA, Moschou PN, Toumi I, Roubelakis-Angelakis KA (2014) Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana. Front Plant Sci 5:132

    Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Shahzad B, Ashraf U, Fahad S, Hassan W, Jan S, Khan I, Saleem MF, Bajwa AA, Wang L, Mahmood A, Samad RA, Tung SA (2016) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res 23:11864–11875

    CAS  Google Scholar 

  • Armendariz AL, Talano MA, Travaglia C, Reinoso H, Oller ALW, Agostini E (2016) Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol Biochem 98:119–127

    CAS  Google Scholar 

  • Ashraf U, Kanu AS, Deng Q, Mo Z, Pan S, Tian H, Tang X (2017) Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Front Plant Sci 8:259

    Google Scholar 

  • Atienzar FA, Conradi M, Evenden AJ, Jha AN, Depledge MH (1999) Qualitative assessment of genotoxicity using random amplified polymorphic DNA: Comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environ Toxicol Chem 18:2275–2282

    CAS  Google Scholar 

  • Atienzar FA, Jha AN (2006) The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat Res 613:76–102

    CAS  Google Scholar 

  • Awasthi S, Chauhan R, Srivastava S, Tripathi RD (2017) The journey of arsenic from soil to grain in rice. Front Plant Sci 8:1007

    Google Scholar 

  • Bates LS, Waldren RP, Tare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Begum MC, Islam MS, Islam M, Amin R, Parvez MS, Kabir AH (2016) Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Plant Physiol Biochem 104:266–277

    CAS  Google Scholar 

  • Britto JDR, Sujin MR, Sebastian SR, Dharmar K (2011) Toxic effect of arsenic on ten rice varieties. J Res Agric 1:011–016

    Google Scholar 

  • Cadet J, Douki T, Ravanat JL (2010) Oxidatively generated base damage to cellular DNA. Free Radic Biol Med 49(1):9–21

    CAS  Google Scholar 

  • Cadet J, Loft S, Olinski R, Evans MD, Bialkowski K, Richard Wagner J, Dedon PC, Mollar P, Greenberg MM, Cooke MS (2012) Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids. Free Radic Res 46:367–381

    CAS  Google Scholar 

  • Camara AY, Wana Y, Yua Y, Wanga Q, Li H (2018) Effect of selenium on uptake and translocation of arsenic in rice seedlings (Oryza sativa L.). Ecotoxicol Environ Safe 148:869–875

    CAS  Google Scholar 

  • Caverzan A, Casassola A, Brammer SP (2016) Antioxidant responses of wheat plants under stress. Genet Mol Biol 39(1):1–6

    CAS  Google Scholar 

  • Cenki S, Dogan N (2015) Random amplified polymorphic DNA as a method to screen metal-tolerant barley (Hordeum vulgare L.) genotypes. Turk J Bot 39:747–756

    Google Scholar 

  • Chandrakar V, Dubey A, Keshavkant S (2016a) Modulation of antioxidant enzymes by salicylic acid in arsenic exposed Glycine max L. J Soil Sci Plant Nutr 16:662–676

    CAS  Google Scholar 

  • Chandrakar V, Yadu B, Meena RK, Dubey A, Keshavkant S (2017a) Arsenic-induced genotoxic responses and their amelioration by diphenylene iodonium, 24-epibrassinolide and proline in Glycine max L. Plant Physiol Biochem 112:74–86

    CAS  Google Scholar 

  • Chandrakar V, Dubey A, Keshavkant S (2018) Modulation of arsenic-induced oxidative stress and protein metabolism by diphenyleneiodonium, 24-epibrassinolide and proline in Glycine max L. Acta Bot Croat 77(1):51–61

    CAS  Google Scholar 

  • Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku JM, Zhao FJ, Salt DE (2014) Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 12:e1002009

    Google Scholar 

  • Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168(1):113–120

    CAS  Google Scholar 

  • Chutipaijit S (2016) Changes in physiological and antioxidant activity of indica rice seedlings in response to mannitol-induced osmotic stress. Chil J Agric Res 76(4):455–462

    Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    CAS  Google Scholar 

  • Cuong TX, Ullah H, Datta A, Hanh TC (2017) Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Sci 24(5):283–290

    Google Scholar 

  • Danh LT, Truong P, Mammucari R, Foster N (2014) A critical review of the As uptake mechanisms and phytoremediation potential of Pteris vittata. Int J Phytoremediat 16:429–453

    CAS  Google Scholar 

  • Datta A, Ullah H, Ferdeous Z (2017) Water management in rice. In: Chauhan B, Jabran K, Mahajan G (eds) Rice production worldwide. Ch 11. Springer, Cham. pp 255–277. https://doi.org/10.1007/978-3-319-47516-5_11.

    Google Scholar 

  • Delowar HKM, Yoshida I, Harada M, Sarkar AA, Miah MNH, Razzaque AHM, Uddin MI, Adhana K, Perveen MS (2005) Growth and uptake of arsenic by rice irrigated with As-contaminated water. J Food Agric Environ 3(2):287–291

    CAS  Google Scholar 

  • Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci USA 103(14):5413–5418

    CAS  Google Scholar 

  • Dogan I, Ozyigit II, Tombuloglu G, Sakcali MS, Tombuloglu H (2016) Assessment of Cd-induced genotoxic damage in Urtica pilulifera L. using RAPD-PCR analysis. Biotechnol Biotec Equip 30(2):284–291

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bull 19:11–15

    Google Scholar 

  • Ellis DR, Gumaelius L, Indriolo E, Pickring IJ, Banks JA, Salt DE (2006) A novel arsenate reductase from the arsenic hyperaccumulating Pteris vittata. Plant Physiol 141:1544–1554

    CAS  Google Scholar 

  • Erturk FA, Nardemir HAG, Agar G (2012) Molecular determination of genotoxic effect of Co and Ni on maize (Zea mays) by RAPD and protein analysis. Toxicol Ind Health 13:141–153

    Google Scholar 

  • Fariduddin Q, Ahmed M, Mir BA, Yusuf M, Khan TA (2015) 24-Epibrassinolide mitigates the adverse effects of manganese induced toxicity through improved antioxidant system and photosynthetic attributes in Brassica juncea. Environ Sci Pollut Res 22:11349–11359. https://doi.org/10.1007/s11356-015-4339-4

    Article  CAS  Google Scholar 

  • Farooq MA, Li L, Ali B, Gill RA, Wang J, Ali S, Gill MB, Zhou W (2015a) Oxidative injury and antioxidant enzymes regulation in arsenic-exposed seedlings of four Brassica napus L. cultivars. Environ Sci Pollut Res 22:10699–10712. https://doi.org/10.1007/s11356-015-4269-1

    Article  CAS  Google Scholar 

  • Farooq MA, Gill RA, Ali B, Wang J, Islam F, Ali S, Zhou W (2015b) Subcellular distribution, modulation of antioxidant and stress related genes response to arsenic in Brassica napus L. Ecotoxicology 25:350–366. https://doi.org/10.1007/s10646-015-1594-6

    Article  CAS  Google Scholar 

  • Finnegan P, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:1–18

    Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re‐evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    CAS  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9(3):303–321

    CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59:309–314

    CAS  Google Scholar 

  • Gichner T, Znidar I, Szakova J (2008) Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat Res 652:186–190

    CAS  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2011) Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars: an evaluation of the role of antioxidant machinery. Plant Signal Behav 6(2):293–300

    CAS  Google Scholar 

  • Gill RA, Hu XQ, Ali B, Yang C, Shou JY, Wu YY, Zhou WJ (2014) Genotypic variation of the responses to chromium toxicity in four oilseed rape cultivars. Biol Plant 58:539–550

    CAS  Google Scholar 

  • Gill SS, Anjum NA, Gill R, Jha M, Tuteja N (2015) DNA damage and repair in plants under ultraviolet and ionizing radiations. Sci World J 2015:250158

    Google Scholar 

  • Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74:1201–1208

    CAS  Google Scholar 

  • Gusman GS, Oliveira JA, Farnese FS, Cambraia J (2013b) Mineral nutrition and enzymatic adaptation induced by arsenate and arsenite exposure in lettuce plants. Plant Physiol Biochem 71:307–314

    CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012a) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: Perspectives and strategies. Springer, Berlin, pp 261–316

    Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2012b) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating the antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149:248–261

    CAS  Google Scholar 

  • Hasanuzzaman MA, Fujita HM (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596

    CAS  Google Scholar 

  • Hassan MJ, Shao G, Zhang GP (2005) Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation. J Plant Nutr 28(7):1259–1270

    CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agric Exp Stn 347:1–32

    Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    CAS  Google Scholar 

  • Hossain MA, Piyatida P, Teixeira da Silva JA, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–37. Article ID 872875. https://doi.org/10.1155/2012/872875

    Google Scholar 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238

    CAS  Google Scholar 

  • Huang TL, Nguyen QT, Fu SF, Lin CY, Chen YC, Huang HJ (2012) Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol Biol 80:587–608. https://doi.org/10.1007/s11103-012-9969-z

    Article  CAS  Google Scholar 

  • Indriolo E, Na G, Ellis D, Saltd DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2205. https://doi.org/10.1105/tpc.109.069773

    Article  CAS  Google Scholar 

  • Karimi N, Ghaderian SM, Raab A, Feldmann J, Meharg AA (2009) An arsenic accumulating, hyper-tolerant brassica, Isatis cappadocica Desv. New Phytol 184:41–47. https://doi.org/10.1111/j.1469-8137.2009.02982.x

    Article  CAS  Google Scholar 

  • Kaul S, Sharma SS, Mehta IK (2008) Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids 34:315–320

    CAS  Google Scholar 

  • Kaur S, Singh HP, Batish DR, Negi A, Mahajan P, Rana S, Kohli RK (2012) Arsenic (As) inhibits radicle emergence and elongation in Phaseolus aureus by altering starch-metabolizing enzymes vis-à-vis disruption of oxidative metabolism. Biol Trace Elem Res 146:360–368

    CAS  Google Scholar 

  • Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicol Environ Saf 72:626–634

    CAS  Google Scholar 

  • Kibria K, Nur F, Begum SN, Islam MM, Paul SK, Rahman KS, Azam SMM (2009) Molecular marker based genetic diversity analysis in aromatic rice genotypes using SSR and RAPD markers. Int J Sustain Crop Prod 4(1):23–34. https://doi.org/10.18782/2320-7051.2892

    Article  Google Scholar 

  • Kirkham MB (2005) Principles of soil and plant water relation. Elsevier Academic Press, USA, pp 300–301

  • Korpe DA, Aras S (2011) Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutat Res 719:29–34

    Google Scholar 

  • Kuramata M, Abe T, Kawasaki A, Ebana K, Shibaya T, Yano M, Ishikawa S (2013) Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains. Rice 6:3. https://doi.org/10.1186/1939-8433-6-3

    Article  Google Scholar 

  • Liu W, Li PJ, Qi XM, Zhou QX, Zheng L, Sun TH, Yang YS (2005) DNA changes in barely (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD. Chemosphere 61:158–167

    CAS  Google Scholar 

  • Leterrier M, Airaki M, Palma JM, Chaki M, Barroso JB, Corpas FJ (2012) Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis. Environ Pollut 166:136–143

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935

    CAS  Google Scholar 

  • Majumder B, Das S, Mukhopadhyay S, Biswas AK (2018) Identification of arsenic-tolerant and arsenic-sensitive rice (Oryza sativa L.) cultivars on the basis of arsenic accumulation assisted stress perception, morpho-biochemical responses, and alteration in genomic template stability. Protoplasma 256(1):193–211

    Google Scholar 

  • Manova V, Gruszka D (2015) DNA damage and repair in plants: from models to crops. Front Plant Sci 6:885

    Google Scholar 

  • McCarty KM, Hanh HT, Kim KW (2011) Arsenic geochemistry and human health in South East Asia. Rev Environ Health 26(1):71–78

    CAS  Google Scholar 

  • Mehta SK, Gaur JP (1999) Heavy metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol 143:253–259

    CAS  Google Scholar 

  • Mirza N, Mahmood Q, Shah MM, Pervez A, Sultan S (2014) Plants as useful vectors to reduce environmental toxic arsenic content Sci World J 2014:1–11. https://doi.org/10.1155/2014/921581

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network in plants. Trends Plant Sci 9:490–498

    CAS  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Google Scholar 

  • Mumthas S, Chidambaram AA, Sundaramoorthy P, Ganesh KS (2010) Effect of arsenic and manganese on root growth and cell division in root tip cells of green gram (Vigna radiata L.). J Food Agric 22:285–297

    Google Scholar 

  • Nath S, Panda P, Mishra S, Dey M, Choudhury S, Sahoo L, Panda SK (2014) Arsenic stress in rice, redox consequences and regulation by iron. Plant Physiol Biochem 80:203–210

    CAS  Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163(4):753–758

    CAS  Google Scholar 

  • Peach K, Tracey MV (1956) Modern methods in plant analysis. Springer-Verlag, Berlin

  • Pinson SRM, Tarpley L, Yan WG, Yeater K, Lahner B, Yakubova E, Huang XY, Zhang M, Guerinot ML, Salt DE (2015) Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Sci 55(1):294–311

    CAS  Google Scholar 

  • Polyn S, Willems A, De Veylder L (2015) Cell cycle entry, maintenance, and exit during plant development. Curr Opin Plant Biol 23:1–7

    CAS  Google Scholar 

  • Rafiq M, Muhamma S, Shahid M, Shamshad S, Khalid S, Niazi NK, Abbas G, Saeed MF, Ali M, Murtaza B (2017) A comparative study to evaluate efficiency of EDTA and calcium in alleviating arsenic toxicity to germinating and young Vicia faba L. seedlings. J Soils Sediment 18:2271–2281

    Google Scholar 

  • Reddy PS, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR, Varshney RK, Kishor PBK (2015) Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol Biochem 94:104–113

    Google Scholar 

  • Roy S (2014) Maintenance of genome stability in plants: repairing DNA double strand breaks and chromatin structure stability. Front Plant Sci 5:487

    Google Scholar 

  • Sabater B, Martín M (2013) Hypothesis: Increase of the ratio singlet oxygen plus superoxide radical to hydrogen peroxide changes stress defense response to programmed leaf death. Front Plant Sci 4:479

    Google Scholar 

  • Saha J, Majumder B, Mumtaz B, Biswas AK (2017) Arsenic-induced oxidative stress and thiol metabolism in two cultivars of rice and its possible reversal by phosphate. Acta Physiol Plant 39:263

    Google Scholar 

  • Sambrook J, Fritschi EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

  • Savva (1998) Use of DNA fringerprinting to detect genotoxic effects. Ecotoxicol Environ Saf 41(1):103–106. https://doi.org/10.1006/eesa.1998.1674

    Article  CAS  Google Scholar 

  • Savva D (2000) The use of arbitrarily primed PCR (AP-PCR) fingerprinting to detect exposure to genotoxic chemicals. Ecotoxicology 9:341–353

    CAS  Google Scholar 

  • Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE, Chao DY, Zhao FJ (2016) OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol 172(3):1708–1719

    CAS  Google Scholar 

  • Shu H, Ni W, Guo S, Gong Y, Shen X, Zhang X, Xu P, Guo Q (2015) Root-applied brassinolide can alleviate the NaCl injuries on cotton. Acta Physiol Plant 37:75–86

    Google Scholar 

  • Singh M, Singh VP, Dubey G, Prasad SM (2015) Exogenous proline application ameliorates toxic effects of arsenate in Solanum melongena L. seedlings. Ecotoxicol Environ Saf 117:164–173

    CAS  Google Scholar 

  • Srivastava AK, Srivastava S, Suprasanna P, D’Souza SF (2011) Thiourea orchestrates regulation of redox state and antioxidant responses to reduce the NaCl-induced oxidative damage in Indian mustard (Brassica juncea L. Czern.). Plant Physiol Biochem 49:676–686

    CAS  Google Scholar 

  • Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64(1):1–16

    CAS  Google Scholar 

  • Syu CH, Huang CC, Jiang PY, Lee CH, Lee DY (2015) Arsenic accumulation and speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils. J Hazard Mater 286:179–186

    CAS  Google Scholar 

  • Tamás L, Mistrík I, Huttová J, Halušková L, Valentovičová K, Zelinová V (2010) Role of reactive oxygen species-generating enzymes and hydrogen peroxide during cadmium, mercury and osmotic stresses in barley root tip. Planta 231:221–231

    Google Scholar 

  • Taspinar MS, Aydin M, Sigmaz B, Yagci S, Arslan E, Agar G (2018) Aluminum-induced changes on DNA damage, DNA methylation and LTR retrotransposon polymorphism in Maize. Arab J Sci Eng 43(1):123–131

    CAS  Google Scholar 

  • Thao NP, Khan MI, Thu NB, Hoang XL, Asgher M, Khan NA (2015) Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol 169:73–84. https://doi.org/10.1104/pp.15.00663

    Article  CAS  Google Scholar 

  • Tuli R, Chakrabarty D, Trivedi PK, Tripathi RD (2010) Recent advances in arsenic accumulation and metabolism in rice. Mol Breed 26:307–323. https://doi.org/10.1007/s11032-010-9412-6

    Article  CAS  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12(3):364–372

    CAS  Google Scholar 

  • Verstraeten SV, Aimo L, Oteiza PI (2008) Aluminium and lead: Molecular mechanisms of brain toxicity. Arch Toxicol 82(11):789–802. https://doi.org/10.1007/s00204-008-0345-3

    Article  CAS  Google Scholar 

  • Wang F, Zeng B, Sun Z, Zhu C (2009) Relationship between proline and Hg2+ -induced oxidative stress in a tolerant rice mutant. Arch Environ Contam Toxicol 56:723–731

    CAS  Google Scholar 

  • Wang SH, Yang ZM, Yang H, Lu B, Li SQ, Lu YP (2004) Copper-induced stress and antioxidative responses in roots of Brassica juncea L. Bot Bull Acad Sin 45:203–212

    CAS  Google Scholar 

  • Wu ZC, Ren HY, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508. https://doi.org/10.1104/pp.111.178921

    Article  CAS  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    CAS  Google Scholar 

  • Xu J, Shi S, Wang L, Tang Z, Lv T, Zhu X, Ding X, Wang Y, Zhao FJ, Wu Z (2017) OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol 215(3):1090–1101

    CAS  Google Scholar 

  • Yadu B, Chandrakar V, Keshavkant S (2016) Responses of plants towards fluoride: an overview of oxidative stress and defense mechanisms. Fluoride 49:293–302

    CAS  Google Scholar 

  • Yadu B, Meena RK, Chandrakar V, Keshavkant S (2017) Glycinebetaine reduces oxidative injury and enhances fluoride stress tolerance via improving antioxidant enzymes, proline and genomic template stability in Cajanus cajan L. S Afr J Bot 111:68–75. https://doi.org/10.1016/j.sajb.2017.03.023

    Article  CAS  Google Scholar 

  • Yoshiyama KO, Sakaguchi K, Kimura S (2013) DNA damage response in plants: conserved and variable response compared to animals. Biology 2:1338–1356

    Google Scholar 

Download references

Acknowledgements

The study was financially supported by the University Grants Commission (UGC), New Delhi funded Major Research Project, (F.No-43-102/2014 (SR), dt 18.01.2016). We deeply acknowledge the facilities, provided by Centre of Advanced Study, Department of Botany (CAS Phase VI, VII), University of Calcutta, and Scientific Research Laboratory, Kolkata. BM & SD wish to acknowledge Biological Anthropology Unit, Indian Statistical Institute (ISI), Kolkata for providing facilities to carry out immense statistical analysis.

Author contributions

BM conducted the experiments, interpreted the data obtained from RAPD analysis and drafted the manuscript. SD did part of the experiments and helped in data analysis. BP statistically analyzed all the data. AKB conceived the study, supervised the experimental design, analyzed the data and gave final shape of the manuscript. All authors read and are in agreement of the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asok K. Biswas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research article ensures objectivity and transparency in research and secures that accepted principles of ethical and professional conduct have been followed. This original research article does not contain any studies with human participants and animals performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, B., Das, S., Pal, B. et al. Evaluation of arsenic induced toxicity based on arsenic accumulation, translocation and its implications on physio-chemical changes and genomic instability in indica rice (Oryza sativa L.) cultivars. Ecotoxicology 29, 13–34 (2020). https://doi.org/10.1007/s10646-019-02135-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-019-02135-w

Keywords

Navigation