[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Google glass adoption in the educational environment: A case study in the Gulf area

  • Published:
Education and Information Technologies Aims and scope Submit manuscript

Abstract

The rapid changes in recent years witnessed the development of technology-based education environment where teachers and learners can interact by adopting Information and Communication Technology (ICT) such as Google Glass. However, few educational universities and colleges have adopted Google Glass in their educational institutions. The reason behind this tendency is that the integration of the technology phenomenon has not been widely explored. This study is an attempt to investigate Google Glass adoption in the Gulf area. We hypothesized that presenting the teachers and learners with the influential features of Google Glass would change their attitudes towards using Google Glass in educational institutions. This paper reports on the design of a framework that links TAM with other influential factors. In other words, this study examines the integration of the Technology Acceptance Model (TAM) with the well-known effective features of the device, including teaching and learning facilitator and learning motivator, ‘functionality’, and trust and information privacy to enhance communication between teachers and students in the classroom. The total number of questionnaires collected was 968 different universities. Partial Least Squares-Structural Equation Modeling (PLS-SEM) was utilized to investigate the research model based on the student’s data gathered through a survey. The results that motivation, trust & privacy have a significant relationship with perceived usefulness and perceived ease of use of Google Glass. The results also suggested that functionality was significantly associated with the perceived ease of use. Further, perceived usefulness and perceived ease of use were significantly related to the Google Glass adoption. Finally, trust & privacy and the perceived ease of use have a crucial role in supporting the adoption of Google Glass. The practical implications of these findings in relation to future work also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adapa, A., Nah, F. F.-H., Hall, R. H., Siau, K., & Smith, S. N. (2018). Factors influencing the adoption of smart wearable devices. International Journal of Human Computer Interaction, 34(5), 399–409. https://doi.org/10.1080/10447318.2017.1357902.

    Article  Google Scholar 

  • Al-Emran, M., & Salloum, S. A. (2017). Students’ attitudes towards the use of Mobile technologies in e-evaluation. International Journal of Interactive Mobile Technologies (IJIM), 11(5), 195–202.

    Article  Google Scholar 

  • Al-Emran, M., Arpaci, I., & Salloum, S. A. (2020a). An empirical examination of continuous intention to use m-learning: An integrated model. Education and Information Technologies, 25, 2899–2918. https://doi.org/10.1007/s10639-019-10094-2.

    Article  Google Scholar 

  • Al-Emran, M., Al-Maroof, R., Al-Sharafi, M. A., & Arpaci, I. (2020b). What impacts learning with wearables? An integrated theoretical model. Interactive Learning Environments, 1–21. https://doi.org/10.1080/10494820.2020.1753216.

  • Al-Emran M., Malik S. I. Al-Kabi M. N. (2020c) A Survey of Internet of Things (IoT) in education: Opportunities and challenges. In A. Hassanien, R. Bhatnagar, N. Khalifa, & M. Taha (Eds.), Toward Social Internet of Things (SIoT): Enabling technologies, architectures and applications. studies in Computational Intelligence, vol 846. Cham: Springer. https://doi.org/10.1007/978-3-030-24513-9_12.

  • Alshurideh, M., Al Kurdi, B., Salloum, S. A., Arpaci, I., & Al-Emran, M. (2020). Predicting the actual use of M-learning systems: A comparative approach using PLS-SEM and machine learning algorithms. Interactive Learning Environments, 1–15. https://doi.org/10.1080/10494820.2020.1826982.

  • Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least squares (PLS) approach to casual modeling: Personal computer adoption and use as an illustration. Technology Studies, Special Issue on Research Methodology, 2(2), 285–309.

  • Basoglu, N., Ok, A. E., & Daim, T. U. (2017). What will it take to adopt smart glasses: A consumer choice based review? Technology in Society, 50, 50–56. https://doi.org/10.1016/j.techsoc.2017.04.005.

    Article  Google Scholar 

  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606. https://doi.org/10.1037/0033-2909.88.3.588.

    Article  Google Scholar 

  • Berque, D. A., & Newman, J. T. (2015). GlassClass: Exploring the design, implementation, and acceptance of google glass in the classroom. In R. Shumaker & S. Lackey (Eds.), Virtual, augmented and mixed reality. VAMR 2015. Lecture notes in computer science (vol. 9179). Cham: Springer. https://doi.org/10.1007/978-3-319-21067-4_25.

  • Bola, S., Brighton, G., Shukla, R., & Powles, J. (2015). Can google glass be used as a training and assessment tool? International Journal of Surgery, 1(23), S103. https://doi.org/10.1016/j.ijsu.2015.07.479.

    Article  Google Scholar 

  • Boykin, E. (2014). Google glass in the class: Wearable technology of the educational future. Retrieved January, 9, 2018.

  • Brewer, Z. E., Fann, H. C., Ogden, W. D., Burdon, T. A., & Sheikh, A. Y. (2016). Inheriting the learner’s view: A Google glass-based wearable computing platform for improving surgical trainee performance. Journal of Surgical Education, 73(4), 682–688. https://doi.org/10.1016/j.jsurg.2016.02.005.

    Article  Google Scholar 

  • Burke, M. (5AD) (n.d.). Ways google glass can be used in education.

  • Cheng, Y.-M., Lou, S.-J., Kuo, S.-H., & Shih, R.-C. (2013). Investigating elementary school students’ technology acceptance by applying digital game based learning to environmental education. Australasian Journal of Educational Technology, 29(1), 96–110. https://doi.org/10.14742/ajet.65.

    Article  Google Scholar 

  • Chuan, C. L., & Penyelidikan, J. (2006). Sample size estimation using Krejcie and Morgan and Cohen statistical power analysis: A comparison. Jurnal Penyelidikan IPBL, 7, 78–86.

    Google Scholar 

  • Dafoulas, G. A., Maia, C., & Loomes, M. (2016). Using optical head-mounted devices (OHMD) for provision of feedback in education. In 2016 12th International Conference on Intelligent Environments (IE) (pp. 159–162). IEEE. https://doi.org/10.1109/IE.2016.34.

  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008.

    Article  Google Scholar 

  • Dehghani, M. (2016). An assessment towards adoption and diffusion of smart wearable technologies by consumers: The cases of smart watch and fitness wristband products. In HT (Extended Proceedings) (pp. 1–6).

    Google Scholar 

  • Dickey, R. M., Srikishen, N., Lipshultz, L. I., Spiess, P. E., Carrion, R. E., & Hakky, T. S. (2016). Augmented reality assisted surgery: A urologic training tool. Asian Journal of Andrology, 18(5), 732–734.

    Article  Google Scholar 

  • Dijkstra, T. K., & Henseler, J. (2015). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics & Data Analysis, 81, 10–23. https://doi.org/10.1016/j.csda.2014.07.008.

    Article  MathSciNet  MATH  Google Scholar 

  • Dingfield, L., Kassutto, S., & Dine, J. (2017). Use of Google glass to enhance communication education. Journal of Pain and Symptom Management, 53(2), 390–391. https://doi.org/10.1016/j.jpainsymman.2016.12.172.

    Article  Google Scholar 

  • Drummond, H. (2008). The Icarus paradox: An analysis of a totally destructive system. Journal of Information Technology, 23(3), 176–184. https://doi.org/10.1057/palgrave.jit.2000119.

    Article  Google Scholar 

  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312.

    Article  Google Scholar 

  • Göken, M., Başoğlu, A. N., & Dabic, M. (2016). Exploring adoption of smart glasses: Applications in medical industry. In 2016 Portland International Conference on Management of Engineering and Technology (PICMET) (pp. 3175–3184). IEEE. https://doi.org/10.1109/PICMET.2016.7806835.

  • Goodhue, D. L., Lewis, W., & Thompson, R. (2012). Does PLS have adavantages for small sample size or non-normal data? MIS Quaterly, 36, 891–1001. https://doi.org/10.2307/41703490.

    Article  Google Scholar 

  • Haesner, M., Wolf, S., Steinert, A., & Steinhagen-Thiessen, E. (2018). Touch interaction with Google glass–is it suitable for older adults? International Journal of Human-Computer Studies, 110, 12–20. https://doi.org/10.1016/j.ijhcs.2017.09.006.

    Article  Google Scholar 

  • Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP1069-6679190202.

    Article  Google Scholar 

  • Hair Jr., J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks: Sage Publications.

  • Hair, J., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. L. (2017). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems, 117(3), 442–458. https://doi.org/10.1108/IMDS-04-2016-0130.

    Article  Google Scholar 

  • Hansen, M. H. (1994). Trustworthiness as a source of competitive advantage. Strategic Management Journal, 15(8), 175–190. https://doi.org/10.1002/smj.4250150912.

    Article  Google Scholar 

  • He, J., McCarley, J. S., Crager, K., Jadliwala, M., Hua, L., & Huang, S. (2018). Does wearable device bring distraction closer to drivers? Comparing smartphones and Google glass. Applied Ergonomics, 70, 156–166. https://doi.org/10.1016/j.apergo.2018.02.022.

    Article  Google Scholar 

  • Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In New challenges to international marketing 22 (pp. 277–319). Emerald Group Publishing Limited. https://doi.org/10.1108/S1474-7979(2009)0000020014.

  • Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., Ketchen Jr., D. J., Hair, J. F., Hult, G. T. M., & Calantone, R. J. (2014). Common beliefs and reality about PLS: Comments on Rönkkö and Evermann (2013). Organizational Research Methods, 17(2), 182–209. https://doi.org/10.1177/1094428114526928.

    Article  Google Scholar 

  • Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8.

    Article  Google Scholar 

  • Higgins, S., Xiao, Z., & Katsipataki, M. (2012). The impact of digital technology on learning: A summary for the education endowment foundation. Durham: Education Endowment Foundation and Durham University.

    Google Scholar 

  • Hsu, J.-Y., Chen, C.-C., & Ting, P.-F. (2018). Understanding MOOC continuance: An empirical examination of social support theory. Interactive Learning Environments, 26(8), 1100–1118. https://doi.org/10.1080/10494820.2018.1446990.

    Article  Google Scholar 

  • Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to under parameterized model misspecification. Psychological Methods, 3(4), 424–453. https://doi.org/10.1037/1082-989X.3.4.424.

    Article  Google Scholar 

  • Huang, J., Lin, Y., & Chuang, S. (2007). Elucidating user behavior of mobile learning. The Electronic Library, Elucidating User Behavior of Mobile Learning., 25(5), 585–598. https://doi.org/10.1108/02640470710829569.

    Article  Google Scholar 

  • Keskin, S., Şahin, M., & Yurdugül, H. (2019). Online learners’ navigational patterns based on data mining in terms of learning achievement. In D. Sampson, J. Spector, D. Ifenthaler, P. Isaías, & S. Sergis (Eds.), Learning technologies for transforming large-scale teaching, learning, and assessment (pp. 105–121). Cham: Springer. https://doi.org/10.1007/978-3-030-15130-0_7.

    Chapter  Google Scholar 

  • Khlaisang, J., Teo, T., & Huang, F. (2019). Acceptance of a flipped smart application for learning: A study among Thai University students. Interactive Learning Environments, 1–18. https://doi.org/10.1080/10494820.2019.1612447.

  • Kinsella, B. (2016). 46.3 Artificial intelligence: Utilizing Google glass and other mobile applications for social skills training in autism spectrum disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 10(55), S70–S71. https://doi.org/10.1016/j.jaac.2016.07.715.

    Article  Google Scholar 

  • Kirkham, R., & Greenhalgh, C. (2015). Social access vs. privacy in wearable computing: A case study of autism. IEEE Pervasive Computing, 14(1), 26–33. https://doi.org/10.1109/MPRV.2015.14.

    Article  Google Scholar 

  • Kline, R. B. (2015). Principles and practice of structural equation modeling. New York: Guilford Publications.

    MATH  Google Scholar 

  • Knight, H. M., Gajendragadkar, P. R., & Bokhari, A. (2015). Wearable technology: Using Google glass as a teaching tool. Case Reports, 2015, 1–3. https://doi.org/10.1136/bcr-2014-208768.

    Article  Google Scholar 

  • Koelle, M., El Ali, A., Cobus, V., Heuten, W., & Boll, S. C. J. (2017). All about acceptability? Identifying factors for the adoption of data glasses. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (pp. 295–300). https://doi.org/10.1145/3025453.3025749.

    Chapter  Google Scholar 

  • Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30(3), 607–610. https://doi.org/10.1177/001316447003000308.

    Article  Google Scholar 

  • Kumar, N. M., Krishna, P. R., Pagadala, P. K., & Kumar, N. M. S. (2018). Use of smart glasses in education-a study. In 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), 2018 2nd International Conference on (pp. 56–59). IEEE. https://doi.org/10.1109/I-SMAC.2018.8653666.

  • Larabi Marie-Sainte, S., Alrazgan, M. S., Bousbahi, F., Ghouzali, S., & Abdul, W. (2016). From mobile to wearable system: A wearable RFID system to enhance teaching and learning conditions. Mobile Information Systems, 2016, 1–10. https://doi.org/10.1155/2016/8364909.

    Article  Google Scholar 

  • Leue M.C., Jung T., Tom Dieck D. (2015) Google glass augmented reality: generic learning outcomes for art galleries. In: Tussyadiah I., Inversini A. (eds.), Information and Communication Technologies in Tourism 2015 (pp. 463–476). Springer, Cham. https://doi.org/10.1007/978-3-319-14343-9_34

  • Lindberg, R., Seo, J., & Laine, T. H. (2016). Enhancing physical education with exergames and wearable technology. IEEE Transactions on LearningTechnologies, 9(4), 328–341. https://doi.org/10.1109/TLT.2016.2556671.

    Article  Google Scholar 

  • Liu, S.-H., Liao, H.-L., & Pratt, J. A. (2009). Impact of media richness and flow on E-learning technology acceptance. Computers & Education, 52(3), 599–607. https://doi.org/10.1016/j.compedu.2008.11.002.

    Article  Google Scholar 

  • Lohmöller, J. B. (1989). Predictive vs. structural modeling: PLS vs. ML. In Latent variable path modeling with partial least squares (pp. 199–226). Physica, Heidelberg. https://doi.org/10.1007/978-3-642-52512-4_5.

  • Marakhimov, A., & Joo, J. (2017). Consumer adaptation and infusion of wearable devices for healthcare. Computers in Human Behavior, 76, 135–148. https://doi.org/10.1016/j.chb.2017.07.016.

    Article  Google Scholar 

  • Nicosia, S. N. (2015). Google glass in the classroom. http://hdl.handle.net/1951/65851

  • Nunes, G. S., & Arruda Filho, E. J. M. (2018). Consumer behavior regarding wearable technologies: Google glass. Innovation & Management Review, 15(3), 230–246. https://doi.org/10.1108/INMR-06-2018-0034.

    Article  Google Scholar 

  • Nunnally, J. C, & Bernstein, I. H. (1978). Psychometric theory.

    Google Scholar 

  • Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (vol. 24, p. 599). New York: McGraw-Hill. https://doi.org/10.1037/018882.

  • Pace, S. (2013). Looking at innovation through CCT glasses: Consumer culture theory and Google glass innovation. Journal of Innovation Management, 1(1), 38–54. https://doi.org/10.24840/2183-0606_001.001_0005.

    Article  Google Scholar 

  • Park, Y. J., & Skoric, M. (2017). Personalized ad in your google glass? Wearable technology, hands-off data collection, and new policy imperative. Journal of Business Ethics, 142, 71–82. https://doi.org/10.1007/s10551-015-2766-2.

    Article  Google Scholar 

  • Parslow, G. R. (2014). Commentary: Google glass: A head-up display to facilitate teaching and learning. Biochemistry and Molecular Biology Education, 42(1), 91–92. https://doi.org/10.1002/bmb.20751.

    Article  Google Scholar 

  • Rauschnabel, P. A., & Ro, Y. K. (2016). Augmented reality smart glasses: An investigation of technology acceptance drivers. International Journal of Technology Marketing, 11(2), 123–148. https://doi.org/10.1504/IJTMKT.2016.075690.

    Article  Google Scholar 

  • Rauschnabel, P. A., Brem, A., & Ivens, B. S. (2015a). Who will buy smart glasses? Empirical results of two pre-market-entry studies on the role of personality in individual awareness and intended adoption of Google glass wearables. Computers in Human Behavior, 49, 635–647. https://doi.org/10.1016/j.chb.2015.03.003.

    Article  Google Scholar 

  • Rauschnabel, P. A., Brem, A., & Ro, Y. (2015b). Augmented reality smart glasses: Definition, conceptual insights, and managerial importance. Unpublished working paper. The University of Michigan-Dearborn, College of Business.

  • Rauschnabel, P. A., Hein, D. W. E., He, J., Ro, Y. K., Rawashdeh, S., & Krulikowski, B. (2016). Fashion or technology? A fashnology perspective on the perception and adoption of augmented reality smart glasses. I-Com, 15(2), 179–194. https://doi.org/10.1515/icom-2016-0021.

    Article  Google Scholar 

  • Rauschnabel, P. A., He, J., & Ro, Y. K. (2018). Antecedents to the adoption of augmented reality smart glasses: A closer look at privacy risks. Journal of Business Research, 92, 374–384. https://doi.org/10.1016/j.jbusres.2018.08.008.

    Article  Google Scholar 

  • Ringle, C. M., Wende, S., & Becker, J.-M. (2015). SmartPLS 3. Bönningstedt: SmartPLS.

    Google Scholar 

  • Sahin, N. T., Keshav, N. U., Salisbury, J. P., & Vahabzadeh, A. (2017). Cool enough for school: Second version of Google glass rated by children facing challenges to social integration as desirable to wear at school (p. 171033). BioRxiv. https://doi.org/10.1101/171033.

  • Salamin, A.-D. (2014). Using Google glass to enrich printed textbooks in a blended learning environment to meet digital natives’ expectations. In E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (pp. 1741–1748). Association for the Advancement of Computing in Education (AACE).

  • Salloum, S. A., Al-Emran, M., Shaalan, K., et al. (2019). Factors affecting the E-learning acceptance: A case study from UAE. Education and Information Technologies, 24, 509–530. https://doi.org/10.1007/s10639-018-9786-3.

    Article  Google Scholar 

  • Sidiya, K., Alzanbagi, N., & Bensenouci, A. (2015). Google glass and apple watch will they become our learning tools? In 2015 12th Learning and Technology Conference (pp. 6–8). IEEE. https://doi.org/10.1109/LT.2015.7587222

  • Silva, M., Freitas, D., Neto, E., Lins, C., Teichrieb, V., & Teixeira, J. M. (2014). Glassist: Using augmented reality on Google glass as an aid to classroom management. In 2014 XVI symposium on virtual and augmented reality (pp. 37–44). IEEE. https://doi.org/10.1109/SVR.2014.41.

  • Sivakumar, R. (2014). Google glass in education. Journal of Cognitive Discourses, 2(02), 24–27.

    Google Scholar 

  • Trial, D. (n.d.). Model fit.

  • Urbach, N., & Ahlemann, F. (2010). Structural equation modeling in information systems research using partial least squares. Journal of Information Technology, Theory and Applications, 11(2), 5–40. https://doi.org/10.1037/0021-9010.90.4.710.

    Article  Google Scholar 

  • Voo, B. (2014). Everything you need to know about Google glass. Retrieved, 11(8), 2014.

  • Woodside, J. M. (2015). Wearable technology acceptance model: Google glass. In Society for Information Technology & Teacher Education International Conference (pp. 1800–1802). Association for the Advancement of Computing in Education (AACE).

  • Wu, T., Dameff, C., & Tully, J. (2014). Integrating Google glass into simulation-based training: Experiences and future directions. Journal of Biomedical Graphics and Computing, 4(2), 49.

    Article  Google Scholar 

  • Zarraonandia, T., Díaz, P., Montero, Á., Aedo, I., & Onorati, T. (2019). Using a Google glass-based classroom feedback system to improve students to teacher communication. IEEE Access, 7, 16837–16846. https://doi.org/10.1109/ACCESS.2019.2893971.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said A. Salloum.

Ethics declarations

Declarations of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 Instrument development

Adoption of Google Glass (GGL)

  • GGL1: I will adopt Google Glass in my future activities assignments as a search tool.

  • GGL2: I will adopt Google Glass in my university daily.

Functionality (FUN)

  • FUN1: Google Glass saves time.

  • FUN2: Google Glass keeps my hand free while studying.

  • FUN3: Google Glass helps in recording my classes.

  • Functionality (MOT)

  • MOT1: I was motivated to study using Google Glass

  • MOT2: I was motivated when Google Glass translate texts easily.

  • MOT3: I was motivated when Google Glass replaces the printed textbooks.

Perceived Ease of Use (PEOU)

  • PEOU1: Goggle Glass makes it easy to do my homework.

  • PEOU2: It is easy to use Google Glass daily.

  • PEOU3: Google Glass has features that can be easily applied.

Perceived Usefulness (PU)

  • PU1: Google Glass helps me in my studies.

  • PU2: Google Glass makes my daily achievements higher.

  • PU3: Google Glass helps me a lot in my flipped classroom.

Trust & privacy (TRUPRV)

  • TRUPRV1: Overall Google Glass is trustworthy.

  • TRUPRV2: Google Glass saves my data safe in my drive.

  • TRUPRV3: Google Glass keeps the privacy of my data and other shared data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Maroof, R.S., Alfaisal, A.M. & Salloum, S.A. Google glass adoption in the educational environment: A case study in the Gulf area. Educ Inf Technol 26, 2477–2500 (2021). https://doi.org/10.1007/s10639-020-10367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10639-020-10367-1

Keywords

Navigation