Summary
The Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays central roles in cancer cell growth and survival. Drug repurposing strategies have provided a valuable approach for developing antitumor drugs. Zelnorm (tegaserod maleate) was originally designed as an agonist of 5-hydroxytryptamine 4 receptor (5-HT4R) and approved by the FDA for treating irritable bowel syndrome with constipation (IBS-C). Through the use of a high-throughput drug screening system, Zelnorm was identified as a JAK/STAT3 signaling inhibitor. Moreover, the inhibition of STAT3 phosphorylation by Zelnorm was independent of its original target 5-HT4R. Zelnorm could cause G1 cell cycle arrest, induce cell apoptosis and inhibit the growth of a variety of cancer cells. The present study identifies Zelnorm as a novel JAK/STAT3 signaling inhibitor and reveals a new clinical application of Zelnorm upon market reintroduction.
Similar content being viewed by others
References
Aaronson DS, Horvath CM (2002) A road map for those who don't know JAK-STAT. Science 296(5573):1653–1655. https://doi.org/10.1126/science.1071545
Leonard WJ, O'Shea JJ (1998) Jaks and STATs: biological implications. Annu Rev Immunol 16:293–322. https://doi.org/10.1146/annurev.immunol.16.1.293
Murray PJ (2007) The JAK-STAT signaling pathway: input and output integration. J Immunol 178(5):2623–2629. https://doi.org/10.4049/jimmunol.178.5.2623
Yu H, Lee H, Herrmann A, Buettner R, Jove R (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 14(11):736–746. https://doi.org/10.1038/nrc3818
Azam M, Erdjument-Bromage H, Kreider BL, Xia M, Quelle F, Basu R, Saris C, Tempst P, Ihle JN, Schindler C (1995) Interleukin-3 signals through multiple isoforms of Stat5. EMBO J 14(7):1402–1411. https://doi.org/10.1002/j.1460-2075.1995.tb07126.x
Garbers C, Aparicio-Siegmund S, Rose-John S (2015) The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol 34:75–82. https://doi.org/10.1016/j.coi.2015.02.008
Horvath CM (2004) The Jak-STAT pathway stimulated by interferon alpha or interferon beta. Sci STKE 2004(260):tr10. https://doi.org/10.1126/stke.2602004tr10
Horvath CM (2004) The Jak-STAT pathway stimulated by interferon gamma. Sci STKE 2004(260):tr8. https://doi.org/10.1126/stke.2602004tr8
Ivashkiv LB, Donlin LT (2014) Regulation of type I interferon responses. Nat Rev Immunol 14(1):36–49. https://doi.org/10.1038/nri3581
Schindler C, Levy DE, Decker T (2007) JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282(28):20059–20063. https://doi.org/10.1074/jbc.R700016200
Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM (2017) JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77(5):521–546. https://doi.org/10.1007/s40265-017-0701-9
Lai SY, Johnson FM (2010) Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: implications for future therapeutic approaches. Drug Resist Updat 13(3):67–78. https://doi.org/10.1016/j.drup.2010.04.001
Pallandre JR, Brillard E, Crehange G, Radlovic A, Remy-Martin JP, Saas P, Rohrlich PS, Pivot X, Ling X, Tiberghien P, Borg C (2007) Role of STAT3 in CD4+CD25+FOXP3+ regulatory lymphocyte generation: implications in graft-versus-host disease and antitumor immunity. J Immunol 179(11):7593–7604. https://doi.org/10.4049/jimmunol.179.11.7593
Sayyah J, Sayeski PP (2009) Jak2 inhibitors: rationale and role as therapeutic agents in hematologic malignancies. Curr Oncol Rep 11(2):117–124. https://doi.org/10.1007/s11912-009-0018-2
Wang SW, Sun YM (2014) The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer (review). Int J Oncol 44(4):1032–1040. https://doi.org/10.3892/ijo.2014.2259
Zeiser R, Blazar BR (2017) Pathophysiology of chronic graft-versus-host disease and therapeutic targets. N Engl J Med 377(26):2565–2579. https://doi.org/10.1056/NEJMra1703472
Anand S, Stedham F, Beer P, Gudgin E, Ortmann CA, Bench A, Erber W, Green AR, Huntly BJ (2011) Effects of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood 118(1):177–181. https://doi.org/10.1182/blood-2010-12-327593
Groner B, von Manstein V (2017) Jak Stat signaling and cancer: opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol 451:1–14. https://doi.org/10.1016/j.mce.2017.05.033
Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr (1999) Stat3 as an oncogene. Cell 98(3):295–303. https://doi.org/10.1016/S0092-8674(00)81959-5
Ling X, Arlinghaus RB (2005) Knockdown of STAT3 expression by RNA interference inhibits the induction of breast tumors in immunocompetent mice. Cancer Res 65(7):2532–2536. https://doi.org/10.1158/0008-5472.CAN-04-2425
Kamran MZ, Patil P, Gude RP (2013) Role of STAT3 in cancer metastasis and translational advances. Biomed Res Int 2013:421821. https://doi.org/10.1155/2013/421821
Niu G, Bowman T, Huang M, Shivers S, Reintgen D, Daud A, Chang A, Kraker A, Jove R, Yu H (2002) Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 21(46):7001–7010. https://doi.org/10.1038/sj.onc.1205859
Xie TX, Huang FJ, Aldape KD, Kang SH, Liu M, Gershenwald JE, Xie K, Sawaya R, Huang S (2006) Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res 66(6):3188–3196. https://doi.org/10.1158/0008-5472.CAN-05-2674
Gupta SC, Sung B, Prasad S, Webb LJ, Aggarwal BB (2013) Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol Sci 34(9):508–517. https://doi.org/10.1016/j.tips.2013.06.005
Oprea TI, Mestres J (2012) Drug repurposing: far beyond new targets for old drugs. AAPS J 14(4):759–763. https://doi.org/10.1208/s12248-012-9390-1
Strittmatter SM (2014) Overcoming drug development bottlenecks with repurposing: old drugs learn new tricks. Nat Med 20(6):590–591. https://doi.org/10.1038/nm.3595
Galie N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D, Fleming T, Parpia T, Burgess G, Branzi A, Grimminger F, Kurzyna M, Simonneau G (2005) Sildenafil use in pulmonary arterial hypertension study G (2005) sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 353(20):2148–2157. https://doi.org/10.1056/NEJMoa050010
Sternitzke C (2014) Drug repurposing and the prior art patents of competitors. Drug Discov Today 19(12):1841–1847. https://doi.org/10.1016/j.drudis.2014.09.016
Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, Munshi N, Anaissie E, Wilson C, Dhodapkar M, Zeddis J, Barlogie B (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341(21):1565–1571. https://doi.org/10.1056/NEJM199911183412102
Teo S, Resztak KE, Scheffler MA, Kook KA, Zeldis JB, Stirling DI, Thomas SD (2002) Thalidomide in the treatment of leprosy. Microbes Infect 4(11):1193–1202. https://doi.org/10.1016/S1286-4579(02)01645-3
Rivkin A (2003) Tegaserod maleate in the treatment of irritable bowel syndrome: a clinical review. Clin Ther 25(7):1952–1974. https://doi.org/10.1016/S0149-2918(03)80198-4
<FDA Joint Meeting of the Gastrointestinal Drugs Advisory Committee and Drug Safety and Risk Management Advisory Committee Briefing Document.pdf>
Chen X, Du Y, Nan J, Zhang X, Qin X, Wang Y, Hou J, Wang Q, Yang J (2013) Brevilin a, a novel natural product, inhibits janus kinase activity and blocks STAT3 signaling in cancer cells. PLoS One 8(5):e63697. https://doi.org/10.1371/journal.pone.0063697
Fan Y, Mao R, Yang J (2013) NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 4(3):176–185. https://doi.org/10.1007/s13238-013-2084-3
Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21(1):11–19. https://doi.org/10.1016/j.cytogfr.2009.11.005
Yeh HH, Lai WW, Chen HH, Liu HS, Su WC (2006) Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene 25(31):4300–4309. https://doi.org/10.1038/sj.onc.1209464
Zhou J, Qu Z, Sun F, Han L, Li L, Yan S, Stabile LP, Chen LF, Siegfried JM, Xiao G (2017) Myeloid STAT3 promotes lung tumorigenesis by transforming tumor Immunosurveillance into tumor-promoting inflammation. Cancer Immunol Res 5(3):257–268. https://doi.org/10.1158/2326-6066.CIR-16-0073
Fukada T, Ohtani T, Yoshida Y, Shirogane T, Nishida K, Nakajima K, Hibi M, Hirano T (1998) STAT3 orchestrates contradictory signals in cytokine-induced G1 to S cell-cycle transition. EMBO J 17(22):6670–6677. https://doi.org/10.1093/emboj/17.22.6670
Hirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19(21):2548–2556. https://doi.org/10.1038/sj.onc.1203551
Yang E, Lerner L, Besser D, Darnell JE Jr (2003) Independent and cooperative activation of chromosomal c-fos promoter by STAT3. J Biol Chem 278(18):15794–15799. https://doi.org/10.1074/jbc.M213073200
Bureau R, Boulouard M, Dauphin F, Lezoualc'h F, Rault S (2010) Review of 5-HT4R ligands: state of art and clinical applications. Curr Top Med Chem 10(5):527–553. https://doi.org/10.2174/156802610791111551
Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419. https://doi.org/10.1126/science.1260419
Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bergstrom K, Brumer H, Cerjan D, Ekstrom M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Bjorklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J, Oksvold P, Olsson I, Oster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson A, Skollermo A, Steen J, Stenvall M, Sterky F, Stromberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Walden A, Wan J, Wernerus H, Westberg J, Wester K, Wrethagen U, Xu LL, Hober S, Ponten F (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4(12):1920–1932. https://doi.org/10.1074/mcp.M500279-MCP200
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. https://doi.org/10.1158/2159-8290.CD-12-0095
Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1. https://doi.org/10.1126/scisignal.2004088
Funding
This work was supported by grants from the National Science and Technology Major Project for Significant New Drugs Development 2018ZX09735–004 and the “AoShan Talents” Program Supported by Qingdao National Laboratory for Marine Science and Technology 2017ASTCP-OS11 to J.B. Yang, the Startup Funding for Scientific Research of Ocean University of China to C.Y. Zhao and the Key Research and Development Plan of Shandong Province (No. GG201709250124) to X.Y. Li.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflicts of interest.
Ethical approval
All applicable international, national, and/or institutional guidelines for the care and use of animals and the use of human tissue samples were followed.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, L., Song, Q., Zhang, X. et al. Zelnorm, an agonist of 5-Hydroxytryptamine 4-receptor, acts as a potential antitumor drug by targeting JAK/STAT3 signaling. Invest New Drugs 38, 311–320 (2020). https://doi.org/10.1007/s10637-019-00790-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10637-019-00790-8