[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Zelnorm, an agonist of 5-Hydroxytryptamine 4-receptor, acts as a potential antitumor drug by targeting JAK/STAT3 signaling

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays central roles in cancer cell growth and survival. Drug repurposing strategies have provided a valuable approach for developing antitumor drugs. Zelnorm (tegaserod maleate) was originally designed as an agonist of 5-hydroxytryptamine 4 receptor (5-HT4R) and approved by the FDA for treating irritable bowel syndrome with constipation (IBS-C). Through the use of a high-throughput drug screening system, Zelnorm was identified as a JAK/STAT3 signaling inhibitor. Moreover, the inhibition of STAT3 phosphorylation by Zelnorm was independent of its original target 5-HT4R. Zelnorm could cause G1 cell cycle arrest, induce cell apoptosis and inhibit the growth of a variety of cancer cells. The present study identifies Zelnorm as a novel JAK/STAT3 signaling inhibitor and reveals a new clinical application of Zelnorm upon market reintroduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aaronson DS, Horvath CM (2002) A road map for those who don't know JAK-STAT. Science 296(5573):1653–1655. https://doi.org/10.1126/science.1071545

    Article  CAS  PubMed  Google Scholar 

  2. Leonard WJ, O'Shea JJ (1998) Jaks and STATs: biological implications. Annu Rev Immunol 16:293–322. https://doi.org/10.1146/annurev.immunol.16.1.293

    Article  CAS  PubMed  Google Scholar 

  3. Murray PJ (2007) The JAK-STAT signaling pathway: input and output integration. J Immunol 178(5):2623–2629. https://doi.org/10.4049/jimmunol.178.5.2623

    Article  CAS  PubMed  Google Scholar 

  4. Yu H, Lee H, Herrmann A, Buettner R, Jove R (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 14(11):736–746. https://doi.org/10.1038/nrc3818

    Article  CAS  PubMed  Google Scholar 

  5. Azam M, Erdjument-Bromage H, Kreider BL, Xia M, Quelle F, Basu R, Saris C, Tempst P, Ihle JN, Schindler C (1995) Interleukin-3 signals through multiple isoforms of Stat5. EMBO J 14(7):1402–1411. https://doi.org/10.1002/j.1460-2075.1995.tb07126.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garbers C, Aparicio-Siegmund S, Rose-John S (2015) The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol 34:75–82. https://doi.org/10.1016/j.coi.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  7. Horvath CM (2004) The Jak-STAT pathway stimulated by interferon alpha or interferon beta. Sci STKE 2004(260):tr10. https://doi.org/10.1126/stke.2602004tr10

    Article  PubMed  Google Scholar 

  8. Horvath CM (2004) The Jak-STAT pathway stimulated by interferon gamma. Sci STKE 2004(260):tr8. https://doi.org/10.1126/stke.2602004tr8

    Article  PubMed  Google Scholar 

  9. Ivashkiv LB, Donlin LT (2014) Regulation of type I interferon responses. Nat Rev Immunol 14(1):36–49. https://doi.org/10.1038/nri3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schindler C, Levy DE, Decker T (2007) JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282(28):20059–20063. https://doi.org/10.1074/jbc.R700016200

    Article  CAS  PubMed  Google Scholar 

  11. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM (2017) JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77(5):521–546. https://doi.org/10.1007/s40265-017-0701-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lai SY, Johnson FM (2010) Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: implications for future therapeutic approaches. Drug Resist Updat 13(3):67–78. https://doi.org/10.1016/j.drup.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  13. Pallandre JR, Brillard E, Crehange G, Radlovic A, Remy-Martin JP, Saas P, Rohrlich PS, Pivot X, Ling X, Tiberghien P, Borg C (2007) Role of STAT3 in CD4+CD25+FOXP3+ regulatory lymphocyte generation: implications in graft-versus-host disease and antitumor immunity. J Immunol 179(11):7593–7604. https://doi.org/10.4049/jimmunol.179.11.7593

    Article  CAS  PubMed  Google Scholar 

  14. Sayyah J, Sayeski PP (2009) Jak2 inhibitors: rationale and role as therapeutic agents in hematologic malignancies. Curr Oncol Rep 11(2):117–124. https://doi.org/10.1007/s11912-009-0018-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang SW, Sun YM (2014) The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer (review). Int J Oncol 44(4):1032–1040. https://doi.org/10.3892/ijo.2014.2259

    Article  CAS  PubMed  Google Scholar 

  16. Zeiser R, Blazar BR (2017) Pathophysiology of chronic graft-versus-host disease and therapeutic targets. N Engl J Med 377(26):2565–2579. https://doi.org/10.1056/NEJMra1703472

    Article  CAS  PubMed  Google Scholar 

  17. Anand S, Stedham F, Beer P, Gudgin E, Ortmann CA, Bench A, Erber W, Green AR, Huntly BJ (2011) Effects of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood 118(1):177–181. https://doi.org/10.1182/blood-2010-12-327593

    Article  CAS  PubMed  Google Scholar 

  18. Groner B, von Manstein V (2017) Jak Stat signaling and cancer: opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol 451:1–14. https://doi.org/10.1016/j.mce.2017.05.033

    Article  CAS  PubMed  Google Scholar 

  19. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr (1999) Stat3 as an oncogene. Cell 98(3):295–303. https://doi.org/10.1016/S0092-8674(00)81959-5

    Article  CAS  PubMed  Google Scholar 

  20. Ling X, Arlinghaus RB (2005) Knockdown of STAT3 expression by RNA interference inhibits the induction of breast tumors in immunocompetent mice. Cancer Res 65(7):2532–2536. https://doi.org/10.1158/0008-5472.CAN-04-2425

    Article  CAS  PubMed  Google Scholar 

  21. Kamran MZ, Patil P, Gude RP (2013) Role of STAT3 in cancer metastasis and translational advances. Biomed Res Int 2013:421821. https://doi.org/10.1155/2013/421821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Niu G, Bowman T, Huang M, Shivers S, Reintgen D, Daud A, Chang A, Kraker A, Jove R, Yu H (2002) Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 21(46):7001–7010. https://doi.org/10.1038/sj.onc.1205859

    Article  CAS  PubMed  Google Scholar 

  23. Xie TX, Huang FJ, Aldape KD, Kang SH, Liu M, Gershenwald JE, Xie K, Sawaya R, Huang S (2006) Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res 66(6):3188–3196. https://doi.org/10.1158/0008-5472.CAN-05-2674

    Article  CAS  PubMed  Google Scholar 

  24. Gupta SC, Sung B, Prasad S, Webb LJ, Aggarwal BB (2013) Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol Sci 34(9):508–517. https://doi.org/10.1016/j.tips.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  25. Oprea TI, Mestres J (2012) Drug repurposing: far beyond new targets for old drugs. AAPS J 14(4):759–763. https://doi.org/10.1208/s12248-012-9390-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Strittmatter SM (2014) Overcoming drug development bottlenecks with repurposing: old drugs learn new tricks. Nat Med 20(6):590–591. https://doi.org/10.1038/nm.3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Galie N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D, Fleming T, Parpia T, Burgess G, Branzi A, Grimminger F, Kurzyna M, Simonneau G (2005) Sildenafil use in pulmonary arterial hypertension study G (2005) sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 353(20):2148–2157. https://doi.org/10.1056/NEJMoa050010

    Article  CAS  PubMed  Google Scholar 

  28. Sternitzke C (2014) Drug repurposing and the prior art patents of competitors. Drug Discov Today 19(12):1841–1847. https://doi.org/10.1016/j.drudis.2014.09.016

    Article  PubMed  Google Scholar 

  29. Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, Munshi N, Anaissie E, Wilson C, Dhodapkar M, Zeddis J, Barlogie B (1999) Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 341(21):1565–1571. https://doi.org/10.1056/NEJM199911183412102

    Article  CAS  PubMed  Google Scholar 

  30. Teo S, Resztak KE, Scheffler MA, Kook KA, Zeldis JB, Stirling DI, Thomas SD (2002) Thalidomide in the treatment of leprosy. Microbes Infect 4(11):1193–1202. https://doi.org/10.1016/S1286-4579(02)01645-3

    Article  CAS  PubMed  Google Scholar 

  31. Rivkin A (2003) Tegaserod maleate in the treatment of irritable bowel syndrome: a clinical review. Clin Ther 25(7):1952–1974. https://doi.org/10.1016/S0149-2918(03)80198-4

    Article  CAS  PubMed  Google Scholar 

  32. <FDA Joint Meeting of the Gastrointestinal Drugs Advisory Committee and Drug Safety and Risk Management Advisory Committee Briefing Document.pdf>

  33. Chen X, Du Y, Nan J, Zhang X, Qin X, Wang Y, Hou J, Wang Q, Yang J (2013) Brevilin a, a novel natural product, inhibits janus kinase activity and blocks STAT3 signaling in cancer cells. PLoS One 8(5):e63697. https://doi.org/10.1371/journal.pone.0063697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fan Y, Mao R, Yang J (2013) NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 4(3):176–185. https://doi.org/10.1007/s13238-013-2084-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21(1):11–19. https://doi.org/10.1016/j.cytogfr.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  36. Yeh HH, Lai WW, Chen HH, Liu HS, Su WC (2006) Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene 25(31):4300–4309. https://doi.org/10.1038/sj.onc.1209464

    Article  CAS  PubMed  Google Scholar 

  37. Zhou J, Qu Z, Sun F, Han L, Li L, Yan S, Stabile LP, Chen LF, Siegfried JM, Xiao G (2017) Myeloid STAT3 promotes lung tumorigenesis by transforming tumor Immunosurveillance into tumor-promoting inflammation. Cancer Immunol Res 5(3):257–268. https://doi.org/10.1158/2326-6066.CIR-16-0073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fukada T, Ohtani T, Yoshida Y, Shirogane T, Nishida K, Nakajima K, Hibi M, Hirano T (1998) STAT3 orchestrates contradictory signals in cytokine-induced G1 to S cell-cycle transition. EMBO J 17(22):6670–6677. https://doi.org/10.1093/emboj/17.22.6670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19(21):2548–2556. https://doi.org/10.1038/sj.onc.1203551

    Article  CAS  PubMed  Google Scholar 

  40. Yang E, Lerner L, Besser D, Darnell JE Jr (2003) Independent and cooperative activation of chromosomal c-fos promoter by STAT3. J Biol Chem 278(18):15794–15799. https://doi.org/10.1074/jbc.M213073200

    Article  CAS  PubMed  Google Scholar 

  41. Bureau R, Boulouard M, Dauphin F, Lezoualc'h F, Rault S (2010) Review of 5-HT4R ligands: state of art and clinical applications. Curr Top Med Chem 10(5):527–553. https://doi.org/10.2174/156802610791111551

    Article  CAS  PubMed  Google Scholar 

  42. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  43. Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bergstrom K, Brumer H, Cerjan D, Ekstrom M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Bjorklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J, Oksvold P, Olsson I, Oster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson A, Skollermo A, Steen J, Stenvall M, Sterky F, Stromberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Walden A, Wan J, Wernerus H, Westberg J, Wester K, Wrethagen U, Xu LL, Hober S, Ponten F (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4(12):1920–1932. https://doi.org/10.1074/mcp.M500279-MCP200

    Article  CAS  PubMed  Google Scholar 

  44. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  45. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Science and Technology Major Project for Significant New Drugs Development 2018ZX09735–004 and the “AoShan Talents” Program Supported by Qingdao National Laboratory for Marine Science and Technology 2017ASTCP-OS11 to J.B. Yang, the Startup Funding for Scientific Research of Ocean University of China to C.Y. Zhao and the Key Research and Development Plan of Shandong Province (No. GG201709250124) to X.Y. Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyang Zhao.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals and the use of human tissue samples were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Song, Q., Zhang, X. et al. Zelnorm, an agonist of 5-Hydroxytryptamine 4-receptor, acts as a potential antitumor drug by targeting JAK/STAT3 signaling. Invest New Drugs 38, 311–320 (2020). https://doi.org/10.1007/s10637-019-00790-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-019-00790-8

Keywords

Navigation