[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Harmonic Tutte polynomials of matroids II

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this work, we introduce the harmonic generalization of the m-tuple weight enumerators of codes over finite Frobenius rings. A harmonic version of the MacWilliams-type identity for m-tuple weight enumerators of codes over finite Frobenius ring is also given. Moreover, we define the demi-matroid analogue of well-known polynomials from matroid theory, namely Tutte polynomials and coboundary polynomials, and associate them with a harmonic function. We also prove the Greene-type identity relating these polynomials to the harmonic m-tuple weight enumerators of codes over finite Frobenius rings. As an application of this Greene-type identity, we provide a simple combinatorial proof of the MacWilliams-type identity for harmonic m-tuple weight enumerators over finite Frobenius rings. Finally, we provide the structure of the relative invariant spaces containing the harmonic m-tuple weight enumerators of self-dual codes over finite fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author.

References

  1. Bachoc C.: On harmonic weight enumerators of binary codes. Des. Codes Cryptogr. 18(1–3), 11–28 (1999).

    Article  MathSciNet  Google Scholar 

  2. Bachoc C.: Harmonic weight enumerators of nonbinary codes and MacWilliams identities, Codes and Association Schemes (Piscataway, NJ, 1999), 1–23, DIMACS Series in Discrete Mathematics and Theoretical Computer 56. American Mathematical Society, Providence, RI, (2001).

  3. Berlekamp E.R., MacWilliams F.J., Sloane N.J.A.: Gleason’s theorem on self-dual codes. IEEE Trans. Inform. Theory IT–18, 409–414 (1972).

    Article  MathSciNet  Google Scholar 

  4. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).

    Article  MathSciNet  Google Scholar 

  5. Britz T., Cameron P.J.: Codes. In: Ellis-Monaghan J.A., Moffatt I. (eds.) Handbook of the Tutte Polynomial and Related Topics, 1st edn, pp. 328–344. Chapman and Hall/CRC, Boca Raton (2022).

    Chapter  Google Scholar 

  6. Britz T., Johnsen T., Mayhew D., Shiromoto K.: Wei-type duality theorems for matroids. Des. Codes Cryptogr. 62, 331–341 (2012).

    Article  MathSciNet  Google Scholar 

  7. Britz T., Shiromoto K.: A MacWilliams-type identity for matroids. Discret. Math. 308, 4551–4559 (2008).

    Article  MathSciNet  Google Scholar 

  8. Britz T., Shiromoto K., Westerbäck T.: Demi-matroids from codes over finite Frobenius rings. Des. Codes Cryptogr. 75, 97–107 (2015).

    Article  MathSciNet  Google Scholar 

  9. Chakraborty H.S., Miezaki T., Oura M.: Harmonic Tutte polynomials of matroids. Des. Codes Cryptogr. 91, 2223–2236 (2023).

    Article  MathSciNet  Google Scholar 

  10. Crapo H.H.: The Tutte polynomial. Aequ. Math. 3, 211–229 (1969).

    Article  MathSciNet  Google Scholar 

  11. Crapo H.H., Rota G.C.: On the Foundations of Combinatorial Theory: Combinatorial Geometries, Preliminary Edition. The M.I.T. Press, Cambridge (1970).

  12. Conway J.H., Sloane N.J.A.: Sphere Packings Lattices and Groups, 3rd edn Springer, New York (1999).

    Book  Google Scholar 

  13. Delsarte P.: Hahn polynomials, discrete harmonics, and \(t\)-designs. SIAM J. Appl. Math. 34, 157–166 (1978).

    Article  MathSciNet  Google Scholar 

  14. Gleason A.M.: Weight polynomials of self-dual codes and the MacWilliams identities. In: Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 3, Gauthier-Villars, Paris, pp. 211–215 (1971).

  15. Greene C.: Weight enumeration and the geometry of linear codes, Studia. Appl. Math. 55, 119–128 (1976).

    MathSciNet  Google Scholar 

  16. Huffman W., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  17. Karlin S., McGregor J.: The Hahn polynomials, formulas and an application. Scr. Math. 26, 33–46 (1961).

    MathSciNet  Google Scholar 

  18. Lam T.Y.: Lectures on Modules and Rings. Springer, New York (1999).

    Book  Google Scholar 

  19. MacWilliams F.J.: A theorem on the distribution of weights in a systematic code. Bell Syst. Tech. J. 42, 79–84 (1963).

    Article  MathSciNet  Google Scholar 

  20. MacWilliams F.J., Mallows C.L., Sloane N.J.A.: Generalizations of Gleason’s theorem on weight enumerators of self-dual codes. IEEE Trans. Inform. Theory IT–18, 794–805 (1972).

    Article  MathSciNet  Google Scholar 

  21. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes, North-Holland Editor (1977).

  22. Miezaki T.: Miezaki’s, Tsuyoshi: website: http://www.f.waseda.jp/miezaki/data.html.

  23. Molien T.: Über die Invarianten der linearen Substitutionsgruppen. Sitzungber. König. Preuss. Akad. Wiss. 52, 1152–1156 (1897).

    Google Scholar 

  24. Nebe G., Rains E.M., Sloane N.J.A.: Self-Dual Codes and Invariant Theory, Algorithms and Computation in Mathematics, vol. 17. Springer, Berlin (2006).

    Google Scholar 

  25. Shiromoto K.: A new MacWilliams-type identity for linear codes. Hokkaido Math. J. 25, 651–656 (1996).

    Article  MathSciNet  Google Scholar 

  26. Tanabe K.: A new proof of the Assmus-Mattson theorem for non-binary codes. Des. Codes Cryptogr. 22, 149–155 (2001).

    Article  MathSciNet  Google Scholar 

  27. Tutte W.T.: A contribution to the theory of chromatic polynomial. Can. J. Math. 6, 80–91 (1954).

    Article  MathSciNet  Google Scholar 

  28. Tutte W.T.: On dichromatic polynomials. J. Comb. Theory 2, 301–320 (1967).

    Article  Google Scholar 

  29. Wei V.K.: Generalized Hamming weights for linear codes. IEEE Trans. Inf. Theory 37, 1412–1418 (1991).

    Article  MathSciNet  Google Scholar 

  30. Wolfram Research, Inc., Mathematica, Version 11.2, Champaign, IL (2017).

Download references

Acknowledgements

The authors would also like to thank the anonymous reviewers for their beneficial comments on an earlier version of the manuscript. The fourth named author is supported by JSPS KAKENHI (22K03277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himadri Shekhar Chakraborty.

Additional information

Communicated by I. Landjev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britz, T., Chakraborty, H.S., Ishikawa, R. et al. Harmonic Tutte polynomials of matroids II. Des. Codes Cryptogr. 92, 1279–1297 (2024). https://doi.org/10.1007/s10623-023-01343-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01343-0

Keywords

Mathematics Subject Classification

Navigation