Abstract
A perfect code in a graph \(\Gamma \) is a subset C of \(V(\Gamma )\) such that no two vertices in C are adjacent and every vertex in \(V(\Gamma ){\setminus } C\) is adjacent to exactly one vertex in C. Let G be a finite group and C a subset of G. Then C is said to be a perfect code of G if there exists a Cayley graph of G admiting C as a perfect code. It is proved that a subgroup H of G is a perfect code of G if and only if a Sylow 2-subgroup of H is a perfect code of G. This result provides a way to simplify the study of subgroup perfect codes of general groups to the study of subgroup perfect codes of 2-groups. As an application, a criterion for determining subgroup perfect codes of projective special linear groups \(\textrm{PSL}(2,q)\) is given.
Similar content being viewed by others
Data Availability
No data, models, or code were generated or used during the study.
References
Biggs N.L.: Perfect codes in graphs. J. Comb. Theory Ser. B 15, 289–296 (1973).
Brouwer A.E., Cohen A.M., Neumaier A.: Distance-regular Graphs. Springer, Berlin (1989).
Chen J., Wang Y., Xia B.: Characterization of subgroup perfect codes in Cayley graphs. Discret. Math. 343, 111813 (2020).
Chihara L.: On the zeros of the Askey–Wilson polynomials, with applications to coding theory. SIAM J. Math. Anal. 18(1), 191–207 (1987).
Dejter I.J., Serra O.: Efficient dominating sets in Cayley graphs. Discret. Appl. Math. 129, 319–328 (2003).
Delsarte P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10, 97 (1973).
Deng Y.-P., Sun Y.-Q., Liu Q., Wang H.-C.: Efficient dominating sets in circulant graphs. Discret. Math. 340, 1503–1507 (2017).
Dickson L.E.: Linear Groups with an Exposition of the Galois Field Theory. Dover Publications Inc., New York (1958).
Feng R., Huang H., Zhou S.: Perfect codes in circulant graphs. Discret. Math. 340, 1522–1527 (2017).
Golomb S.W., Welch L.R.: Perfect codes in the Lee metric and the packing of polyominoes. SIAM J. Appl. Math. 18, 302–317 (1970).
Hammond P., Smith D.H.: Perfect codes in the graphs \(O_{k}\). J. Comb. Theory Ser. B 19, 239–255 (1975).
Horak P., Kim D.: 50 years of the Golomb–Welch conjecture. IEEE Trans. Inform. Theory 64, 3048–3061 (2018).
Huang H., Xia B., Zhou S.: Perfect codes in Cayley graphs. SIAM J. Discret. Math. 32, 548–559 (2018).
Khaefi Y., Akhlaghi Z., Khosravi B.: On the subgroup perfect codes in Cayley graphs. Des. Codes Cryptogr. 91, 55–61 (2023).
Kratochvíl J.: Perfect codes over graphs. J. Comb. Theory Ser. B 40, 224–228 (1986).
Krotov D.S.: The existence of perfect codes in Doob graphs. IEEE Trans. Inf. Theory 66(3), 1423–1427 (2020).
Kurzweil H., Stellmacher B.: The Theory of Finite Groups: An Introduction. Universitext. Springer, New York (2004).
Lee J.: Independent perfect domination sets in Cayley graphs. J. Graph Theory 37, 213–219 (2001).
Leung K.H., Zhou Y.: No lattice tiling of \(\mathbb{Z} _{n}\) by Lee sphere of radius \(2\). J. Comb. Theory Ser. A 171, 105157 (2020).
Lloyd S.P.: Binary block coding. Bell Syst. Tech. J. 36, 517–535 (1957).
Ma X., Walls G.L., Wang K., Zhou S.: Subgroup perfect codes in Cayley graphs. SIAM J. Discret. Math. 34, 1909–1921 (2020).
MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).
Martin W.J., Zhu X.J.: Anticodes for the Grassman and bilinear forms graphs. Des. Codes Cryptogr. 6(1), 73–79 (1995).
Schwartz M., Etzion T.: Codes and anticodes in the Grassman graph. J. Comb. Theory Ser. A 97, 27–42 (2002).
Shi M., Huang D., Krotov D.S.: Additive perfect codes in Doob graphs. Des. Codes Cryptogr. 87(8), 1857–1869 (2019).
Suzuki M.: Group Theory I. Springer, New York (1982).
Tamizh C.T., Mutharasu S.: Subgroups as efficient dominating sets in Cayley graphs. Discret. Appl. Math. 161, 1187–1190 (2013).
Thas J.A.: Polar spaces, generalized hexagons and perfect codes. J. Comb. Theory Ser. A 29, 87–93 (1980).
Tietäväinen A.: On the nonexistence of perfect codes over finite fields. SIAM J. Appl. Math. 24, 88–96 (1973).
van Lint J. H.: Nonexistence theorems for perfect error-correcting codes. In: Computers in Algebra and Number Theory, vol. IV, SIAM-AMS Proceedings (1971).
van Lint J.H.: A survey of perfect codes. Rocky Mt. J. Math. 5, 199–224 (1975).
Zhang J., Zhou S.: On subgroup perfect codes in Cayley graphs. Eur. J. Comb. 91, 103228 (2021).
Zhang J., Zhou S.: Corrigendum to “On subgroup perfect codes in Cayley graphs [Eur. J. Comb. 91, 103228 (2022)]’’. Eur. J. Comb. 101, 103461 (2022).
Zhou S.: Total perfect codes in Cayley graphs. Des. Codes Cryptogr. 81, 489–504 (2016).
Zhou S.: Cyclotomic graphs and perfect codes. J. Pure Appl. Algebra 223, 931–947 (2019).
Zinoviev V.A., Leontiev V.K.: The nonexistence of perfect codes over Galois fields. Probl. Control Inf. Theory 2, 123–132 (1973).
Acknowledgements
This work was supported by the Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX1054) and the Foundation of Chongqing Normal University (21XLB006).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by C. J. Colbourn.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, J. Characterizing subgroup perfect codes by 2-subgroups. Des. Codes Cryptogr. 91, 2811–2819 (2023). https://doi.org/10.1007/s10623-023-01240-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-023-01240-6