[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Signed difference sets

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A \((v,k,\lambda )\) difference set in a group G is a subset \(\{d_1, d_2, \ldots ,d_k\}\) of G such that \(D=\sum d_i\) in the group ring \({\mathbb {Z}}[G]\) satisfies

$$\begin{aligned} D D^{-1} = n + \lambda G, \end{aligned}$$

where \(n=k-\lambda \). If \(D=\sum s_i d_i\), where the \(s_i \in \{ \pm 1\}\), satisfies the same equation, we will call it a signed difference set. This generalizes both difference sets (all \(s_i=1\)) and circulant weighing matrices (G cyclic and \(\lambda =0\)). We will show that there are other cases of interest, and give some results on their existence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during this research [8] are available free online at Zenodo.

References

  1. Arasu K.T., Dillon J.F.: Perfect ternary arrays. In: Pott A., Kumaran V., Helleseth T., Jungnickel D. (eds.) Difference Sets, Sequences and Their Correlation Properties, pp. 1–15. Kluwer, Boston (1999).

    Google Scholar 

  2. Arasu K.T., Hollon J.R.: Group developed weighing matrices. Australas. J Comb. 55, 205–234 (2013).

    MathSciNet  MATH  Google Scholar 

  3. Arasu K.T., Gordon D.M., Zhang Y.: New nonexistence results on circulant weighing matrices. Cryptogr. Commun. 13, 775–789 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  4. Berndt B., Williams K., Evans R.: Gauss and Jacobi Sums. Wiley, New York (1998).

    MATH  Google Scholar 

  5. Beth T., Jungnickel D., Lenz H.: Design Theory, Encyclopedia of Mathematics and Its Applications, vol. 1, 2nd edn Cambridge University Press, New York (1999).

    MATH  Google Scholar 

  6. Golomb S.W., Gong G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005).

    Book  MATH  Google Scholar 

  7. Gordon, D.M.: La Jolla combinatorics repository. https://www.dmgordon.org (2022)

  8. Gordon, D. M.: La Jolla signed difference set repository, Zenodo, 1.1. https://doi.org/10.5281/zenodo.7473882 (2023).

  9. Helleseth T., Kumar P.V.: Sequences with low correlation. In: Pless V., Brualdi R.A., Huffman W.C. (eds.) Handbook of Coding Theory II, pp. 1765–1853. Elsevier, Amsterdam (1998).

    Google Scholar 

  10. Hu, H., Gong, G.: A new class of ternary and quaternary sequences with two-level autocorrelation. In: Proceedings of the 2010 IEEE International Symposium on Information Theory, pp. 1292–1296 (2010)

  11. Jungnickel D., Pott A., Smith K.W.: Difference sets. In: Colbourn C.J. (ed.) CRC Handbook of Combinatorial Designs, 2nd edn, pp. 419–435. CRC Press, Boca Raton (2007).

    Google Scholar 

  12. Lehmer E.: On residue difference sets. Can. J. Math. 5, 425–432 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  13. Tan M.M.: Group invariant weighing matrices. Des. Codes Cryptogr. 86, 2677–2702 (2018).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Gordon.

Additional information

Communicated by K. T. Arasu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordon, D.M. Signed difference sets. Des. Codes Cryptogr. 91, 2107–2115 (2023). https://doi.org/10.1007/s10623-022-01171-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01171-8

Keywords

Navigation