[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Construction of single-deletion-correcting DNA codes using CIS codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We find a method for constructing DNA codes with single-deletion-correcting capability. We first present an explicit algorithm for the construction of the q-ary single-deletion-correcting codes (abbreviated as SDC codes) using a class of the complementary information set codes (abbreviated as CIS codes), where q is a power of a prime. We then show that the encoding/decoding scheme of the CIS codes with single-deletion-correcting capability has a simple deterministic algorithm. Finally, applying our algorithm to the generated DNA codes with appropriate modification, we obtain the DNA codes with single-deletion-correcting capability. We present some various examples of such DNA codes, and we also obtain some lower bounds on the maximum size of the single-deletion-correcting DNA codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Ghaffar K.A., Ferreira H.C., Cheng L.: Correcting deletions using linear and cyclic codes. IEEE Trans. Inform. Theory 56(10), 5223–5234 (2010).

    Article  MathSciNet  Google Scholar 

  2. Aboluion N., Smith D.H., Perkins S.: Linear and nonlinear constructions of DNA codes with Hamming distance \(d\), constant GC-content and a reverse-complement constraint. Discret. Math. 312(5), 1062–1075 (2012).

    Article  MathSciNet  Google Scholar 

  3. Baker S., Flack R., Houghten S.: Optimal variable-length insertion-deletion correcting codes and edit metric codes. Congr. Numer. 186, 65–80 (2007).

    MathSciNet  MATH  Google Scholar 

  4. Blawat M., et al.: Forward error correction for DNA data storage. Proc. Comput. Sci. 80, 1011–1022 (2016).

    Article  Google Scholar 

  5. Cannon J., Playoust C.: An Introduction to Magma. University of Sydney, Sydney (1994).

    Google Scholar 

  6. Carlet C., Gaborit P., Kim J.-L., Solé P.: A new class of codes for Boolean masking of cryptographic computations. IEEE Trans. Inform. Theory 58, 6000–6011 (2012).

    Article  MathSciNet  Google Scholar 

  7. Gaborit P., King O.D.: Linear constructions for DNA codes. Theor. Comput. Sci. 334(1–3), 99–113 (2005).

    Article  MathSciNet  Google Scholar 

  8. Gabrys R., Yaakobi E., Milenkovic O.: Codes in the Damerau distance for deletion and adjacent transposition correction. IEEE Trans. Inform. Theory 64(4), 2550–2570 (2018).

    Article  MathSciNet  Google Scholar 

  9. Jain S., et al.: Duplication-correcting codes for data storage in the DNA of living organisms. IEEE Trans. Inform. Theory 63(8), 4996–5010 (2017).

    Article  MathSciNet  Google Scholar 

  10. Kim H.J., Choi W.-H., Lee Y.: Designing DNA codes from reversible self-dual codes over \(GF(4)\). preprint.

  11. Kim H.J., Choi W.-H., Lee Y.: Construction of reversible self-dual codes. Finite Fields Appl. (2020). https://doi.org/10.1016/j.ffa.2020.101714.

    Article  MathSciNet  Google Scholar 

  12. Kim H.J., Lee Y.: Complementary information set codes over \(GF(p)\). Des. Codes Cryptogr. 81, 541–555 (2016).

    Article  MathSciNet  Google Scholar 

  13. King O.D.: Bounds for DNA codes with constant GC-content. Electron. J. Comb. 10, R33 (2003).

    Article  MathSciNet  Google Scholar 

  14. Kulkarni A.A., Kiyavash N., Sreenivas R.: On the Varshamov-Tenengol’ts construction on binary strings. Discret. Math. 317, 79–90 (2014).

    Article  Google Scholar 

  15. Levenshtein V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Doklady 10(8), 707–710 (1966).

    MathSciNet  Google Scholar 

  16. Levenshtein V.I.: On perfect codes in deletion and insertion metric. Discret. Math. Appl. 2(3), 241–258 (1992).

    Article  Google Scholar 

  17. Marathe A., Condon A.E., Corn R.M.: On combinatorial DNA design. J. Comp. Biol. 8, 201–219 (2001).

    Article  Google Scholar 

  18. Mercier H., Bhargava V.K., Tarokh V.: A survey of error-correcting codes for channels with symbol synchronization errors. IEEE Commun. Surv. Tutor. 12(1), 87–96 (2010).

    Article  Google Scholar 

  19. SageMath, the Sage Mathematics Software System (Version 8.6). The Sage Developers (2018) https://www.sagemath.org.

  20. Schoeny C., Sala F., Dolecek L.: Novel combinatorial coding results for DNA sequencing and data storage. In: 2017 51st Asilomar Conference on Signals, Systems, and Computers. IEEE, pp. 511–515 (2017).

  21. Sloane N.J.: On single-deletion-correcting codes. In: Proc. Codes and designs (Columbus, OH, 2000), pp. 273–291, Ohio State Univ. Math. Res. Inst. Publ., Berlin (2002).

  22. Smith D., et al.: Interleaved constrained codes with markers correcting bursts of insertions or deletions. IEEE Commun. Lett. 21(4), 702–705 (2017).

    Article  Google Scholar 

  23. Tulpan D., Smith D.H., Smith R.: Thermodynamic post-processing versus GC-content pre-processing for DNA codes satisfying the Hamming distance and reverse-complement constraints. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(2), 441–452 (2014).

    Article  Google Scholar 

  24. Varbanov Z., Todorov T., Hristova M.: A method for constructing DNA codes from additive self-dual codes over GF(4). In: Proc. CAIM conference, Romania, vol. 40 (2014).

  25. Varshamov R.R., Tenengol’ts G.M.: Code correcting single asymmetric errors. Avtomat. Telemekh. 26(2), 288–292 (1965).

    Google Scholar 

Download references

Acknowledgements

We thank anonymous referees for their helpful comments, which improved the clarity of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Jin Kim.

Additional information

Communicated by C. Carlet.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

W.-H. Choi: is supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (NRF-2019R1I1A1A01057755), H.J. Kim: is supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (NRF-2017R1D1A1B03028251) and (NRF-2020R1F1A1A01071645), and Y. Lee: is supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (Grant No. 2019R1A6A1A11051177) and also by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST)(NRF-2017R1A2B2004574).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, WH., Kim, H.J. & Lee, Y. Construction of single-deletion-correcting DNA codes using CIS codes. Des. Codes Cryptogr. 88, 2581–2596 (2020). https://doi.org/10.1007/s10623-020-00802-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00802-2

Keywords

Mathematics Subject Classification

Navigation