[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

MDS 2D convolutional codes with optimal 1D horizontal projections

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Two dimensional (2D) convolutional codes is a class of codes that generalizes standard one-dimensional (1D) convolutional codes in order to treat two dimensional data. In this paper we present a novel and concrete construction of 2D convolutional codes with the particular property that their projection onto the horizontal lines yield optimal [in the sense of Almeida et al. (Linear Algebra Appl 499:1–25, 2016)] 1D convolutional codes with a certain rate and certain Forney indices. Moreover, using this property we show that the proposed constructions are indeed maximum distance separable, i.e., are 2D convolutional codes having the maximum possible distance among all 2D convolutional codes with the same parameters. The key idea is to use a particular type of superregular matrices to build the generator matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Almeida P., Napp D., Pinto R.: A new class of superregular matrices and MDP convolutional codes. Linear Algebra Appl. 439(7), 2145–2157 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  2. Almeida P., Napp D., Pinto R.: Superregular matrices and applications to convolutional codes. Linear Algebra Appl. 499, 1–25 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  3. Charoenlarpnopparut C., Bose N.K.: Grobner bases for problem solving in multidimensional systems. Multidimens. Syst. Signal Process. 12(3), 365–376 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  4. Climent J.J., Napp D., Perea C., Pinto R.: A construction of MDS \(2\)D convolutional codes of rate \(1/n\) based on superregular matrices. Linear Algebra Appl. 437, 766–780 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  5. Climent J.J., Napp D., Perea C., Pinto R.: Maximum distance separable 2D convolutional codes. IEEE Trans. Inf. Theory 62(2), 669–680 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  6. Climent J.J., Napp D., Pinto R., Simões R.: Decoding of 2D convolutional codes over the erasure channel. Adv. Math. Commun. 10(1), 179–193 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  7. El Oued M., Sole P.: MDS convolutional codes over a finite ring. IEEE Trans. Inf. Theory 59(11), 7305–7313 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  8. Fornasini E., Valcher M.E.: Algebraic aspects of two-dimensional convolutional codes. IEEE Trans. Inf. Theory 40(4), 1068–1082 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  9. Gluesing-Luerssen H., Rosenthal J., Smarandache R.: Strongly MDS convolutional codes. IEEE Trans. Inf. Theory 52(2), 584–598 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  10. Hansen J., Østergaard J., Kudahl J., Madsen J.: On the construction of jointly superregular lower triangular Toeplitz matrices. International Symposium on Information Theory (ISIT) (2016).

  11. Hutchinson R.: The existence of strongly MDS convolutional codes. SIAM J. Control Optim. 47(6), 2812–2826 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  12. Hutchinson R., Smarandache R., Trumpf J.: On superregular matrices and MDP convolutional codes. Linear Algebra Appl. 428, 2585–2596 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. Justesen J., Forchhammer S.: Two Dimensional Information Theory and Coding. With Applications to Graphics Data and High-Density Storage Media. Cambridge University Press, Cambridge (2010).

    MATH  Google Scholar 

  14. La Guardia G.: On classical and quantum MDS-convolutional BCH codes. IEEE Trans. Inf. Theory 60(1), 304–312 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  15. Lobo R.G., Bitzer D.L., Vouk M.A.: On locally invertible encoders and muldimensional convolutional codes. IEEE Trans. Inf. Theory 58(3), 1774–1782 (2012).

    Article  MATH  Google Scholar 

  16. Mahmood R., Badr A., Khisti A.: Convolutional codes with maximum column sum rank for network streaming. IEEE Trans. Inf. Theory 62(6), 3039–3052 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. McEliece R.J.: The algebraic theory of convolutional codes. In: Pless V., Huffman W.C. (eds.) Handbook of Coding Theory, vol. 1, pp. 1065–1138. Elsevier Science Publishers, Amsterdam (1998).

    Google Scholar 

  18. Napp D., Perea C., Pinto R.: Input-state-output representations and constructions of finite support 2D convolutional codes. Adv. Math. Commun. 4(4), 533–545 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  19. Napp D., Pinto R., Toste T.: On MDS convolutional codes over \({\mathbb{Z}}_{p^r}\). Des. Codes Cryptogr. 83, 101–114 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  20. Norton G.: On minimal realization over a finite chain ring. Des. Codes Cryptogr. 16(2), 161–178 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  21. Ozbudak F., Ozkaya B.: A minimum distance bound for quasi-nd-cyclic codes. Finite Fields Appl. 41, 193–222 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  22. Pinho T., Pinto R., Rocha P.: Realization of 2D convolutional codes of rate \(\frac{1}{n}\) by separable Roesser models. Des. Codes Cryptogr. 70(1), 241–250 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  23. Rosenthal J., York E.V.: BCH convolutional codes. IEEE Trans. Inf. Theory 45(6), 1833–1844 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  24. Roth R.M., Lempel A.: On MDS codes via Cauchy matrices. IEEE Trans. Inf. Theory 35(6), 1314–1319 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  25. Smarandache R., Gluesing-Luerssen H., Rosenthal J.: Constructions of MDS-convolutional codes. IEEE Trans. Automat. Control 47(5), 2045–2049 (2001).

    MathSciNet  MATH  Google Scholar 

  26. Tomás V.: Complete-MDP Convolutional Codes over the Erasure Channel. PhD thesis, Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante, Alicante, España (2010).

  27. Tomás V., Rosenthal J., Smarandache R.: Decoding of MDP convolutional codes over the erasure channel. In: Proceedings of the 2009 IEEE International Symposium on Information Theory (ISIT 2009), pp. 556–560, Seoul, Korea (2009). IEEE.

  28. Tomas V., Rosenthal J., Smarandache R.: Decoding of convolutional codes over the erasure channel. IEEE Trans. Inf. Theory 58(1), 90–108 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  29. Valcher M.E., Fornasini E.: On 2D finite support convolutional codes: an algebraic approach. Multidimens. Syst. Signal Process. 5, 231–243 (1994).

    Article  MATH  Google Scholar 

  30. Weiner P.: Muldimensional Convolutional Codes. PhD dissertation, University of Notre Dame, USA (1998).

Download references

Acknowledgements

The authors are grateful to the anonymous referees for the many insightful comments. This work was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (FCT-Fundação para a Ciência e a Tecnologia), within Project UID/MAT/04106/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Pinto.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the Special Issue on Network Coding and Designs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, P., Napp, D. & Pinto, R. MDS 2D convolutional codes with optimal 1D horizontal projections. Des. Codes Cryptogr. 86, 285–302 (2018). https://doi.org/10.1007/s10623-017-0357-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-017-0357-1

Keywords

Mathematics Subject Classification

Navigation