[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Mapping prefer-opposite to prefer-one de Bruijn sequences

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We present a mapping of the binary prefer-opposite de Bruijn sequence of order n onto the binary prefer-one de Bruijn sequence of order \(n-1\). The mapping is based on the differentiation operator \(D(\langle {b_1,\ldots ,b_l}\rangle ) = \langle b_2-b_1, b_3-b_2,\ldots , b_{l}-b_{l-1} \rangle \) where bit subtraction is modulo two. We show that if we take the prefer-opposite sequence \(\langle {b_1,b_2,\ldots ,b_{2^n}}\rangle \), apply D to get the sequence \(\langle {\hat{b}_1, \ldots , \hat{b}_{2^n-1}}\rangle \) and drop all the bits \(\hat{b}_i\) such that \(\langle {\hat{b}_i,\ldots ,\hat{b}_{i+n-1}}\rangle \) is a substring of \(\langle {\hat{b}_1,\ldots ,\hat{b}_{i+n-2}}\rangle \), we get the prefer-one de Bruijn sequence of order \(n-1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alhakim A.M.: A simple combinatorial algorithm for de Bruijn sequences. Am. Math. Mon. 117(8), 728–732 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  2. de Bruijn N.G.: A combinatorial problem. Proc. Koninklijke Ned. Akad. Wet. Ser. A 49(7), 758 (1946).

    MATH  Google Scholar 

  3. Lempel A.: On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift registers. IEEE Trans. Comput. 100(12), 1204–1209 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  4. Martin M.H.: A problem in arrangements. Bull. Am. Math. Soc. 40(12), 859–864 (1934).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the ISRAEL SCIENCE FOUNDATION (Grants No. 857/12 and 856/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gera Weiss.

Additional information

Communicated by M. Paterson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, A., Weiss, G. Mapping prefer-opposite to prefer-one de Bruijn sequences. Des. Codes Cryptogr. 85, 547–555 (2017). https://doi.org/10.1007/s10623-016-0322-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-016-0322-4

Keywords

Mathematics Subject Classification

Navigation