[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Codes over \(F_{4}+vF_4\) and some DNA applications

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this work, we study the structure of linear, constacyclic and cyclic codes over the ring \(R=F_{4}[v]/(v^{2}-v)\) and establish relations to codes over \( F_{4}\) by defining a Gray map between R and \(F_{4}^{2}\) where \(F_4\) is the field with 4 elements. Constacyclic codes over R are shown to be principal ideals. Further, we study skew constacyclic codes over R. The structure of all skew constacyclic codes is completely determined. Furthermore, we introduce reversible codes which provide a rich source for DNA codes. We conclude the paper by obtaining some DNA codes over R that attain the Griesmer bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abualrub T., Aydin N., Seneviratne P.: Theta-cyclic codes cver \(F_2 + vF_2\). Aust. J. Comb. 54, 115–126 (2012).

  2. Adleman L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

  3. Bayram A., Siap I.: Structure of codes over the ring \(Z_{3}[v]/\langle v^{3}-v\rangle \). Appl. Algebra Eng. Commun. Comput. 24, 369–386 (2013).

  4. Bayram A., Siap I.: Cyclic and constacyclic codes over a non-chain ring. J. Algebra Comb. Discret. Struct. Appl. 1, 1–13 (2014).

  5. Bayram A., Oztas E.S., Siap I.: Codes over a non chain ring with some applications. Lecture Notes in Computer Science, vol. 8592, pp. 106–110 (2014).

  6. Boucher D., Geiselmann W., Ulmer F.: Skew cyclic codes. Appl. Algebr. Eng. Commun. 18, 379–389 (2007)

  7. Boucher D., Sole P., Ulmer F.: Skew constacyclic codes over galois rings. Adv. Math. Commun. 2, 273–292 (2008).

  8. Gursoy F., Siap I., Yildiz B.: Construction of skew cylic codes over \(F_{q} + vF_{q}\). Adv. Math. Commun. 8, 313–322 (2014).

  9. Hammons A.R., Kumar Jr. P.V., Calderbank J.A., Sloane N.J.A., Sole P.: The \(Z_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40, 301–319 (1994).

  10. Horimoto H., Shiromoto K.: MDS codes over finite quasi-Frobenius rings, preprint.

  11. Jitman S., Ling S., Udomkavanich P.: Skew constacyclic codes over finite chain rings. Adv. Math. Commun. 6, 39–63 (2012).

  12. Marathe A., Condon A.N., Corn R.M.: On combinatorial DNA word design. J. Comput. Biol. 8, 201–219 (2001).

  13. Massey J.L.: Reversible codes. Inf. Control 7, 369–380 (1964).

  14. Oztas E.S., Siap I.: Lifted polynomials over \(F_{16}\) and their applications to DNA codes. Filomat 27, 459–466 (2013).

  15. Shiromoto K., Storme L.: A Griesmer bound for linear codes over finite quasi-Frobenius rings. Discret. Appl. Math. 128, 263274 (2003).

  16. Siap I., Abualrub T., Aydin N., Seneviratne P.: Skew cyclic codes of arbitrary length. Int. J. Inf. Coding Theory 2, 10–20 (2011).

  17. Siap I., Abualrub T., Ghrayeb A.: Cyclic DNA codes over the ring \(F_2[u]/(u^2-1)\) based on the deletion distance. J. Franklin Ins. 346, 731–740 (2006).

  18. Abualrub T., Ghrayeb A., Zeng X.N.: Consruction of cyclic codes over \(F_4\) for DNA computing. J. Franklin Ins. 343, 448–457 (2006).

  19. Xu X.Q., Zhu S.X.: Skew cyclic codes over the ring \(F_4+vF_4\). J. Hefei Univ. Technol. Nat. Sci. 34, 1429–1432 (2011).

  20. Yamamoto M., Kashiwamura S., Ohuchi A.: DNA memory with \(16.8\)M addresses. Lecture Notes in Computer Science, DNA Computing, vol. 4868, pp. 99–108 (2008).

  21. Yildiz B., Karadeniz S.: Linear codes over \(F_{2} + uF_{2} +vF_{2} + uvF_{2}\). Des. Codes Cryptogr. 54, 61–81 (2010).

  22. Yildiz B., Siap I.: Cyclic codes over \(F_2[u]/(u^4 - 1)\) and applications to DNA codes. Comput. Math. Appl. 63, 1169–1176 (2012).

  23. Zhu S., Wang Y.: A class of constacyclic codes over \(F_{p}+vF_{p}\) and their Gray image. Discret. Math. Theory 311, 2677–2682 (2011).

  24. Zhu S., Wang Y., Shi M.: Some result on cyclic codes over \(F_{2}+vF_{2}\). IEEE Trans. Inf. Theory 56, 1680–1684 (2010).

Download references

Acknowledgments

The authors wish to express sincere thanks to the anonymous referees who gave many helpful comments and suggestions that greatly improved the presentation of the paper. This paper is presented in The 4th International Congress on Mathematical Software 2014 (ICMS 2014) and partially published in the proceedings [5].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Siap.

Additional information

Communicated by J.-L. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayram, A., Oztas, E.S. & Siap, I. Codes over \(F_{4}+vF_4\) and some DNA applications. Des. Codes Cryptogr. 80, 379–393 (2016). https://doi.org/10.1007/s10623-015-0100-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-015-0100-8

Keywords

Mathematics Subject Classification

Navigation