[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Self-embeddings of Hamming Steiner triple systems of small order and APN permutations

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The classification, up to isomorphism, of all self-embedding monomial power permutations of Hamming Steiner triple systems of order \(n=2^m-1\) for small \(m\,(m \le 22)\), is given. As far as we know, for \(m\! \in \! \{5,7,11,13,17,19 \}\), all given self-embeddings in closed surfaces are new. Moreover, they are cyclic for all \(m\) and nonorientable at least for all \(m \le 19\). For any non prime \(m\), the nonexistence of such self-embeddings in a closed surface is proven. The rotation line spectrum for self-embeddings of Hamming Steiner triple systems in pseudosurfaces with pinch points as an invariant to distinguish APN permutations or, in general, to classify permutations, is also proposed. This invariant applied to APN monomial power permutations gives a classification which coincides with the classification of such permutations via CCZ-equivalence, at least up to \(m\le 17\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett G.K., Grannel M.J., Griggs T.S.: Cyclic bi-embeddings of Steiner triple systems on 31 points. Glasgov Math. 43, 145–151 (2001).

    Google Scholar 

  2. Bracken C., Byrne E., Markin N., McGuire G.: A few more quadratic APN functions. Cryptogr. Commun. 3(1), 43–53 (2011).

    Google Scholar 

  3. Bracken C., Byrne E., McGuire G., Nebe G.: On the equivalence of quadratic APN functions. Des. Codes Cryptogr. 61(3), 261–272 (2011).

    Google Scholar 

  4. Browning K.A., Dillon J.F., Kibler R.E., McQuistan M.T.: APN polynomials and related codes. J. Comb. Inf. Syst. 34(1–4), 135–159 (2009).

    Google Scholar 

  5. Budaghyan L., Carlet C., Pott A.: New classes of almost bent and almost perfect nonlinear functions. IEEE Trans. Inf. Theory 52(3), 1141–1152 (2006).

    Google Scholar 

  6. Budaghyan L., Carlet C., Leander G.: Constructing new APN functions from known ones. Finite Fields Appl. 15(2), 150–159 (2009).

    Google Scholar 

  7. Cannon J.J., Bosma W. (eds.): Handbook of Magma Functions, Edition 2.13 (2006).

  8. Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15(2), 125–156 (1998).

    Google Scholar 

  9. Edel Y., Pott A.: A new almost perfect nonlinear function which is not quadratic. Adv. Math. Commun. 3(1), 59–81 (2009).

    Google Scholar 

  10. Edel Y., Kyureghyan G., Pott A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inf. Theory 52(2), 744–747 (2006).

    Google Scholar 

  11. Grannell M.J., Griggs T.S.: Designs and topology. In: Surveys in Combinatorics 2007. London Mathematical Society Lecture Note Series, vol. 346, pp. 121–174. Cambridge University Press, Cambridge (2007).

  12. Grannell M.J., Knor M.: A construction for biembeddings of Latin squares. Electron. J. Comb. 18(1), P190 (2011).

    Google Scholar 

  13. Grannel M.J., Bennett G.K., Griggs T.S.: Bi-embeddings of the projective space PG(3,2). J. Stat. Plan. Inference 86, 321–329 (2000).

    Google Scholar 

  14. Grannell M.J., Griggs T.S., Širáň J.: Recursive constructions for triangulations. J. Graph Theory 39, 87–107 (2002).

    Google Scholar 

  15. Hall Jr. M.: The Theory of Groups. The Macmillan Company, New York (1959).

  16. Kühnel W.: Topological aspects of twofold triple systems. Expo. Math. 16(4), 289–332 (1998).

    Google Scholar 

  17. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).

  18. Östergård P.R.J., Pottonen O.: There exist Steiner triple systems of order 15 that do not occur in a perfect binary one-error-correcting code. J. Comb. Des. 15, 65–468 (2007).

    Google Scholar 

  19. Rifà J., Solov’eva F.I., Villanueva M.: Hamming codes avoiding Hamming subcodes. In: Proceedings of the 12th International Workshop on Algebraic and Combinatorial Coding Theory (ACCT’2010), Novosibirsk, Russia, pp. 256–261 (2010).

  20. Rifà J., Solov’eva F.I., Villanueva M.: Intersection of Hamming codes avoiding Hamming subcodes. Des. Codes Cryptogr. 62, 209–223 (2012).

    Google Scholar 

  21. Ringel G.: Map Color Theorem. Springer, New York (1974).

  22. Seifert H., Threlfall W.: Lehrbuch der Topologie, vii+353 pp. Teubner, Leipzig (1934).

  23. Solov’eva F.I.: Tilings of nonorientable surfaces by Steiner triple systems. Probl. Inf. Transm. 43(3), 167–178 (2007).

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Spanish MICINN under Grants MTM2009-08435 and TIN2010-17358, and by the Catalan AGAUR under Grant 2009SGR1224. The work of the second author was supported by Grants RFBR 12-01-00631-a and NSh-1939.2014.1 of President of Russia for Leading Scientific Schools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Rifà.

Additional information

Communicated by G. McGuire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rifà, J., Solov’eva, F.I. & Villanueva, M. Self-embeddings of Hamming Steiner triple systems of small order and APN permutations. Des. Codes Cryptogr. 75, 405–427 (2015). https://doi.org/10.1007/s10623-013-9909-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9909-1

Keywords

Mathematics Subject Classification

Navigation