[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A new family of relative hemisystems on the Hermitian surface

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A new family of relative hemisystems on the generalized quadrangle \({\mathcal {H}}(3,q^2)\) admitting a group of order \(q^2(q+1)\) as automorphism group, is constructed. As a by product a new infinite family of hyperovals of \({\mathcal {H}}(3,q^2)\) is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruen A.A., Hirschfeld J.W.P.: Applications of line geometry over finite fields. II. The Hermitian surface. Geom. Dedicata 7(3), 333–353 (1978).

    Google Scholar 

  2. Bruen A.A., Hirschfeld J.W.P.: Intersections in projective space. II: pencils of quadrics. Eur. J. Comb. 9, 255–270 (1988).

    Google Scholar 

  3. Buekenhout F., Hubaut X.: Locally polar spaces and related rank \(3\) groups. J. Algebr. 45, 391–434 (1977).

    Google Scholar 

  4. Cameron P.J.: Partial quadrangles. Q. J. Math. Oxf. Ser. (2) 26, 61–73 (1975).

  5. Cameron P.J., Goethals J.M., Seidel J.J.: Strongly regular graphs having strongly regular subconstituents. J. Algebr. 55(2), 257–280 (1978).

    Google Scholar 

  6. Cameron P.J., Hughes D.R., Pasini A.: Extended generalized quadrangles. Geom. Dedicata 35, 193–228 (1990).

    Google Scholar 

  7. Cossidente A.: Relative hemisystems on the Hermitian surface. J. Algebr. Comb. 38(2), 275–284 (2013).

    Google Scholar 

  8. Cossidente A., Penttila T.: Hemisystems on the Hermitian surface. J. Lond. Math. Soc. 72, 731–741 (2005).

    Google Scholar 

  9. Coxeter H.S.M.: Twelve points in \(PG(5,3)\) with \(95040\) self-transformations. Proc. R. Soc. Lond. Ser. A 247, 279–293 (1958).

  10. De Bruyn B.: On hyperovals of polar spaces. Des. Codes Cryptogr. 56(2–3), 183–195 (2010).

    Google Scholar 

  11. Del Fra A., Ghinelli D., Payne S.E.: \((0, n)\)-sets in a generalized quadrangle, Combinatorics ’90 (Gaeta, 1990). Ann. Discret. Math. 52, 139–157 (1992).

  12. Dembowski P.: Finite Geometries. Springer-Verlag, Berlin, New York (1968).

  13. Dye R.H.: On the conjugacy classes of involutions of the unitary groups \(U_{m}(K), SU_{m}(K),\) \(PU_{m}(K),PSU_{m}(K)\), over perfect fields of characteristic \(2\). J. Algebr. 24, 453–459 (1973).

  14. Haemers W.H., Higman D.G.: Strongly regular graphs with strongly regular decomposition. Linear Algebr. Appl. 114–115, 379–398 (1989).

    Google Scholar 

  15. Hill R.: Caps and groups. Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II, pp. 389–394. Atti dei Convegni Lincei, No. 17, Accad. Naz. Lincei, Rome (1976).

  16. Hirschfeld J.W.P.: Finite Projective Spaces of Three Dimensions. Oxford University Press, Oxford (1991).

  17. Noda R.: Partitioning strongly regular graphs. Osaka J. Math. 22, 379–389 (1985).

    Google Scholar 

  18. Payne S.E., Thas J.A.: Finite Generalized Quadrangles. Research Notes in Mathematics, vol. 110. Pitman, Boston, MA (1984).

  19. Penttila T., Williford J.: New families of \(Q\)-polynomial association schemes. J. Comb. Theory Ser. A 118, 502–509 (2011).

    Google Scholar 

  20. Segre B.: Forme e geometrie Hermitiane con particolare riguardo al caso finito. Ann. Mat. Pura Appl. 70, 1–201 (1965).

    Google Scholar 

  21. Thas J.A.: Ovoids and spreads of finite classical polar spaces. Geom. Dedicata 10, 135–143 (1981).

    Google Scholar 

  22. Thas J.A.: Projective geometry over a finite field. In: Buekenhout F. (ed.) Handbook of Incidence Geometry, pp. 295–347. North-Holland, Amsterdam (1995).

  23. Thas K.: Symmetry in Finite Generalized Quadrangles. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cossidente.

Additional information

Communicated by D. Ghinelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cossidente, A. A new family of relative hemisystems on the Hermitian surface. Des. Codes Cryptogr. 75, 213–221 (2015). https://doi.org/10.1007/s10623-013-9906-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9906-4

Keywords

Mathematics Subject Classification

Navigation