[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Some low-density parity-check codes derived from finite geometries

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We look at low-density parity-check codes over a finite field \({\mathbb{K}}\) associated with finite geometries \({T_2^*(\mathcal{K})}\), where \({\mathcal{K}}\) is a sufficiently large k-arc in PG(2, q), with q = p h. The code words of minimum weight are known. With exception of some choices of the characteristic of \({\mathbb{K}}\) we compute the dimension of the code and show that the code is generated completely by its code words of minimum weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagchi B., Sastry N.S.N.: Codes associated with generalized polygons. Geometriae Dedicata 27, 1–8 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Biggs N.: Algebraic graph theory, Cambridge tracts in mathematics 67. Cambridge University Press, London (1974)

    Google Scholar 

  3. Bose R.C.: Mathematical theory of the symmetric factorial designs. Sankhya 8, 107–166 (1947)

    MATH  MathSciNet  Google Scholar 

  4. Fossorier M.P.C.: Quasicyclic low-density parity check codes from circulant permutation matrices. IEEE Trans. Inform. Theory 50, 1788–1793 (2004)

    Article  MathSciNet  Google Scholar 

  5. Gallager R.G.: Low density parity check codes. IRE Trans. Inform. Theory 8, 21–28 (1962)

    Article  MathSciNet  Google Scholar 

  6. Hirschfeld J.W.P.: Projective geometries over finite fields 2nd edn. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  7. Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces: update 2001. In: Blokhuis A., Hirschfeld J.W.P., Jungnickel D., and Thas J.A.(eds.) Proceedings of the fourth Isle of thorns conference, developments in mathematics, vol. 3, pp. 201–246. Kluwer Academic Publishers, Dordrecht Finite Geometries, (Chelwood Gate, 16-21 July 2000), (2001).

  8. Johnson S.J., Weller S.R.: Regular low-density parity-check codes from oval designs. Eur. Trans. Telecommun. 14(5), 399–409 (2003)

    Google Scholar 

  9. Johnson S.J., Weller S.R.: Construction of low-density parity-check codes from Kirkman triple systems, In: Proceedings of the IEEE globecom conference, San Antonio TX, available at http://www.ee.newcastle.edu.au/users/staff/steve/ (2001).

  10. Johnson S.J., Weller S.R.: Construction of low-density parity-check codes from combinatorial designs. In: Proceedings of the IEEE information theory workshop, pp. 90–92. Cairns, Australia (2001).

  11. Johnson S.J., Weller S.R.: Codes for iterative decoding from partial geometries. In: Proceedings of the IEEE international symposium on information theory, p. 6. Switzerland, June 30–July 5, extended abstract, available at http://murray.newcastle.edu.au/users/staff/steve (2002).

  12. Kim J.L., Mellinger K., Storme L.: Small weight code words in LDPC codes defined by (dual) classical generalized quadrangles. Des. Codes Cryptogr. 42(1), 73–92 (2007)

    Article  MathSciNet  Google Scholar 

  13. Kim J.L., Pele U., Perepelitsa I., Pless V., Friedland S.: Explicit construction of families of LDPC codes with no 4-cycles. IEEE Trans. Inform. Theory 50, 2378–2388 (2004)

    Article  MathSciNet  Google Scholar 

  14. Kou Y., Lin S., Fosserier M.P.C.: Low-density parity-check codes based on finite geometries: a rediscovery and new results. IEEE Trans. Inform. Theory 47(7), 2711–2736 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu Z., Pados D.A.: LDPC codes from generalized polygons. IEEE Trans. Inform. Theory 51(11), 3890–3898 (2005)

    Article  MathSciNet  Google Scholar 

  16. MacKay D.J.C., Neal R.M.: Near Shannon limit performance of low density parity check codes. Electron. lett. 32(18), 1645–1646 (1996)

    Article  Google Scholar 

  17. MacKay D.J.C.: Good error correcting codes based on very sparse matrices. IEEE Trans. Inform. Theory 45(2), 399–431 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. MacKay D.J.C., Davey M.C.: Evaluation of Gallager codes for short block length and high rate applications; Codes, systems and graphical models. In: Marcus, B., Rosethal, J. (eds) IMA in Mathematics and its Applications, vol. 123, pp. 113–130. Springer-Verlag, New York (2000)

    Google Scholar 

  19. Margulis G.A.: Explicit constructions of graphs without short cycles and low density codes. Combinatorica 2, 71–78 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. Payne S.E., Thas J.A.: Finite Generalized Quadrangles. Pitman Advanced Publishing Program, MA (1984)

    MATH  Google Scholar 

  21. Pepe V., Storme L., Van de Voorde G.: Small weight code words in the LDPC codes arising from linear representations of geometries. J. Combin. Designs 17, 1–24 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rosenthal J., Vontobel P.O.: Construction of LDPC codes using Ramanujan graphs and ideas from Margulis. In: Voulgaris P.G., and Srikant R. (eds.) Proceedings of the 38th Allerton conference on communications, control and computing, Monticello, IL, pp. 248–257. Coordinated Science Laboratory. 4–6 Oct 2000.

  23. Segre B.: Ovals in a finite projective plane. Canad J Math 7, 414–416 (1955)

    MATH  MathSciNet  Google Scholar 

  24. Sin P., Xiang Q.: On the dimension of certain LDPC codes based on q-regular bipartite graphs. IEEE Trans. Infom. Theory 52, 3735–3737 (2006)

    Article  MathSciNet  Google Scholar 

  25. Sipser M., Spielman D.A.: Expander codes. IEEE Trans. Inform. Theory 42, 1710–1722 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tanner R.M., Sridhara D., Sridharan A., Fuja T.E., Costello J.D. Jr: LDPC block codes and convolutional codes based on circulant matrices. IEEE Trans. Inform. Theory 50, 2966–2984 (2004)

    Article  MathSciNet  Google Scholar 

  27. Vontobel P.O., Tanner R.M.: Construction of codes based on finite generalized quadrangles for iterative decoding. In: Proceedings of 2001 IEEE international symposium information theory, p. 233. Washington DC (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vandendriessche.

Additional information

Communicated by J.W.P. Hirschfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandendriessche, P. Some low-density parity-check codes derived from finite geometries. Des. Codes Cryptogr. 54, 287–297 (2010). https://doi.org/10.1007/s10623-009-9324-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9324-9

Keywords

Mathematics Subject Classification (2000)

Navigation