Abstract
Cloud computing systems handle large volumes of data by using almost unlimited computational resources, while spatial data warehouses (SDWs) are multidimensional databases that store huge volumes of both spatial data and conventional data. Cloud computing environments have been considered adequate to host voluminous databases, process analytical workloads and deliver database as a service, while spatial online analytical processing (spatial OLAP) queries issued over SDWs are intrinsically analytical. However, hosting a SDW in the cloud and processing spatial OLAP queries over such database impose novel obstacles. In this article, we introduce novel concepts as cloud SDW and spatial OLAP as a service, and afterwards detail the design of novel schemas for cloud SDW and spatial OLAP query processing over cloud SDW. Furthermore, we evaluate the performance to process spatial OLAP queries in cloud SDWs using our own query processor aided by a cloud spatial index. Moreover, we describe the cloud spatial bitmap index to improve the performance to process spatial OLAP queries in cloud SDWs, and assess it through an experimental evaluation. Results derived from our experiments revealed that such index was capable to reduce the query response time from 58.20 up to 98.89 %.
Similar content being viewed by others
References
Abadi, D.J.: Data management in the cloud: limitations and opportunities. IEEE Data Eng. Bull. 32(1), 3–12 (2009)
Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., Saltz, J.: Hadoop GIS: a high performance spatial data warehousing system over mapreduce. Proc. VLDB Endow. 6(11), 1009–1020 (2013). doi:10.14778/2536222.2536227
Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing. Communications of the ACM 53(4), 50–58 (2010). doi:10.1145/1721654.1721672
Badger, L., Patt-corner, R., Voas, J.: Cloud computing synopsis and recommendations. Technical reports, NSIT—National Institute of Standards and Technology, Gaithersburg (2012)
Baltzer, O., Rau-Chaplin, A., Zeh, N.: Building a scalable spatial OLAP system. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 13–15. Coimbra (2013)
Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975). doi:10.1145/361002.361007
Buyya, R., Broberg, J., Goscinski, A.M.: Cloud Computing Principles and Paradigms. Wiley, New York (2011)
Câmara, G., Casanova, M.A., Hemerly, A.S., Magalhães, G.C., Medeiros, C.M.B.: Anatomia de Sistemas de Informações Geográficas. In Portuguese. UNICAMP, Brazil (1996)
Chan, C.Y., Ioannidis, Y.E.: An efficient bitmap encoding scheme for selection queries. In: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, pp. 215–226. Philadelphia (1999)
Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. ACM SIGMOD Rec. 26(1), 65–74 (1997). doi:10.1145/248603.248616
Dehne, F.K.H.A., Kong, Q., Rau-Chaplin, A., Zaboli, H., Zhou, R.: A distributed tree data structure for real-time OLAP on cloud architectures. In: Proceedings of the 2013 IEEE International Conference on Big Data, pp. 499–505. Santa Clara (2013)
DeMers, M.N.: Fundamentals of Geographical Information Systems, 2nd edn. Wiley, New York (2000)
Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv. 30(2), 170–231 (1998). doi:10.1145/280277.280279
Gorawski, M., Chechelski, R.: Online balancing of aR-tree indexed distributed spatial data warehouse. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Wasniewski, J. (eds.) Parallel Processing and Applied Mathematics, LNCS, vol. 3911, pp. 470–477. Springer, Berlin (2005)
Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data, pp. 47–57, Boston (1984)
Hacigumus, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proceedings of the 18th International Conference on Data Engineering, pp. 29–38, San Jose (2002)
Hacigumus, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted data in the database-service-provider model. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, pp. 216–227. Madison (2002)
Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. SIGMOD Rec. 25(2), 205–216 (1996). doi:10.1145/235968.233333
Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 2nd edn. John Wiley & Sons Inc, New York, NY, USA (2002)
Malinowski, E., Zimányi, E.: Representing spatiality in a conceptual multidimensional model. In: Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems, pp. 12–22, Washington (2004)
Malinowski, E., Zimányi, E.: Requirements specification and conceptual modelling for spatial data warehouses. In: Proceedings of the OTM Confederated International Workshops and Posters 2006 on the Move to Meaningful Internet Systems: OTM 2006 Workshops, pp. 1616–1625, Montpellier (2006)
Mateus, R.C., Siqueira, T.L.L., Times, V.C., Ciferri, R.R., Ciferri, C.D.A.: How does the spatial data redundancy affect query performance in geographic data warehouses? J. Inf. Data Manage. 1(3), 519–534 (2010)
Mell, P., Grance, T.: The NIST definition of cloud computing. Technical Report pp. 800–145, National Institute of Standards and Technology (NIST) (2011)
O’Neil, P., Graefe, G.: Multi-table joins through bitmapped join indices. ACM SIGMOD Rec. 24(3), 8–11 (1995). doi:10.1145/211990.212001
O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The star schema benchmark and augmented fact table indexing. In: Nambiar, R., Poess, M. (eds.) Performance Evaluation and Benchmarking, Lecture Notes in Computer Science, pp. 237–252. Springer, Berlin (2009)
O’Neil, P., Quass, D.: Improved Query Performance with Variant Indexes. In: ACM SIGMOD International Conference on Management of Data, pp. 38–49. Tucson (1997)
Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial data warehouses. In: Proceedings of the 7th International Symposium on Advances in Spatial and Temporal Databases, pp. 443–459. Redondo Beach (2001)
Rivest, S., Bédard, Y., Proulx, M.J., Nadeau, M., Hubert, F., Pastor, J.: SOLAP technology: merging business intelligence with geospatial technology for interactive spatio-temporal exploration and analysis of data. ISPRS J. Photogramm. Remote Sens. 60(1), 17–33 (2005). doi:10.1016/j.isprsjprs.2005.10.002
Ruiz, C.V., Times, V.C.: A taxonomy of SOLAP operators. In: Proceedings of the XXIV Brazilian Symposium on Databases, pp. 151–165, Fortaleza (2009)
Silva, J., Oliveira, A.G., Fidalgo, R.N., Salgado, A.C., Times, V.C.: Modelling and querying geographical data warehouses. Inf. Syst. 35(5), 592–614 (2010). doi:10.1016/j.is.2009.10.005
Siqueira, T.L.L., Ciferri, C.D.A., Times, V.C., Ciferri, R.R.: The SB-index and the HSB-index: efficient indices for spatial data warehouses. GeoInformatica 16(1), 165–205 (2011). doi:10.1007/s10707-011-0128-5
Siqueira, T.L.L., Ciferri, C.D.A., Times, V.C., Oliveira, A.G., Ciferri, R.R.: The impact of spatial data redundancy on SOLAP query performance. J. Braz. Comput. Soc. 15(2), 19–34 (2009)
Siqueira, T.L.L., Ciferri, R.R., Times, V.C., Ciferri, C.D.A.: Benchmarking spatial data warehouses. In: Proceedings of the 12th International Conference on Data Warehousing and Knowledge Discovery, pp. 40–51. Bilbao (2010)
Sosinsky, B.: Cloud Computing Bible, 1st edn. Wiley, New York (2011)
Stockinger, K., Wu, K.: Bitmap indexes for data warehouses. In: Data warehouses and OLAP. IGI Global (2006)
Vaisman, A.A., Zimányi, E.: Spatial data warehouses, chap. 11, pp. 427–474. Data-Centric Systems and Applications. Springer (2014)
Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds: towards a cloud definition. Comput. Commun. Rev. 39(1), 50–55 (2008). doi:10.1145/1496091.1496100
Wu, K., Otoo, E.J., Shoshani, A.: Optimizing bitmap indices with efficient compression. ACM Trans. Database Syst. 31(1), 1–38 (2006)
Wu, K., Stockinger, K., Shoshani, A.: Breaking the curse of cardinality on bitmap indexes. In: Proceedings of the 20th International Conference on Scientific and Statistical Database Management, pp. 348–365. Hong Kong (2008)
Zhang, X., Ai, J., Wang, Z., Lu, J., Meng, X.: An efficient multi-dimensional index for cloud data management. In: Proceedings of the 1st International Workshop on Cloud Data Management, pp. 17–24. Hong Kong (2009)
Acknowledgments
This work has been supported by the following Brazilian research agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Financiadora de Estudos e Projetos (FINEP). The second author has been funded by grant number 229675/2013-1 from CNPq and grant number 14/14103-9 from FAPESP/CAPES. The third author has been funded by grant number 246263/2012-1 from CNPq.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mateus, R.C., Siqueira, T.L.L., Times, V.C. et al. Spatial data warehouses and spatial OLAP come towards the cloud: design and performance. Distrib Parallel Databases 34, 425–461 (2016). https://doi.org/10.1007/s10619-015-7176-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10619-015-7176-z