[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Spatial data warehouses and spatial OLAP come towards the cloud: design and performance

  • Published:
Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

Cloud computing systems handle large volumes of data by using almost unlimited computational resources, while spatial data warehouses (SDWs) are multidimensional databases that store huge volumes of both spatial data and conventional data. Cloud computing environments have been considered adequate to host voluminous databases, process analytical workloads and deliver database as a service, while spatial online analytical processing (spatial OLAP) queries issued over SDWs are intrinsically analytical. However, hosting a SDW in the cloud and processing spatial OLAP queries over such database impose novel obstacles. In this article, we introduce novel concepts as cloud SDW and spatial OLAP as a service, and afterwards detail the design of novel schemas for cloud SDW and spatial OLAP query processing over cloud SDW. Furthermore, we evaluate the performance to process spatial OLAP queries in cloud SDWs using our own query processor aided by a cloud spatial index. Moreover, we describe the cloud spatial bitmap index to improve the performance to process spatial OLAP queries in cloud SDWs, and assess it through an experimental evaluation. Results derived from our experiments revealed that such index was capable to reduce the query response time from 58.20 up to 98.89 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.opengeospatial.org.

  2. www.census.gov/geo/www/tiger

References

  1. Abadi, D.J.: Data management in the cloud: limitations and opportunities. IEEE Data Eng. Bull. 32(1), 3–12 (2009)

    Google Scholar 

  2. Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., Saltz, J.: Hadoop GIS: a high performance spatial data warehousing system over mapreduce. Proc. VLDB Endow. 6(11), 1009–1020 (2013). doi:10.14778/2536222.2536227

    Article  Google Scholar 

  3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing. Communications of the ACM 53(4), 50–58 (2010). doi:10.1145/1721654.1721672

    Article  Google Scholar 

  4. Badger, L., Patt-corner, R., Voas, J.: Cloud computing synopsis and recommendations. Technical reports, NSIT—National Institute of Standards and Technology, Gaithersburg (2012)

  5. Baltzer, O., Rau-Chaplin, A., Zeh, N.: Building a scalable spatial OLAP system. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 13–15. Coimbra (2013)

  6. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975). doi:10.1145/361002.361007

    Article  MathSciNet  MATH  Google Scholar 

  7. Buyya, R., Broberg, J., Goscinski, A.M.: Cloud Computing Principles and Paradigms. Wiley, New York (2011)

    Book  Google Scholar 

  8. Câmara, G., Casanova, M.A., Hemerly, A.S., Magalhães, G.C., Medeiros, C.M.B.: Anatomia de Sistemas de Informações Geográficas. In Portuguese. UNICAMP, Brazil (1996)

    Google Scholar 

  9. Chan, C.Y., Ioannidis, Y.E.: An efficient bitmap encoding scheme for selection queries. In: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, pp. 215–226. Philadelphia (1999)

  10. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. ACM SIGMOD Rec. 26(1), 65–74 (1997). doi:10.1145/248603.248616

    Article  Google Scholar 

  11. Dehne, F.K.H.A., Kong, Q., Rau-Chaplin, A., Zaboli, H., Zhou, R.: A distributed tree data structure for real-time OLAP on cloud architectures. In: Proceedings of the 2013 IEEE International Conference on Big Data, pp. 499–505. Santa Clara (2013)

  12. DeMers, M.N.: Fundamentals of Geographical Information Systems, 2nd edn. Wiley, New York (2000)

    Google Scholar 

  13. Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv. 30(2), 170–231 (1998). doi:10.1145/280277.280279

    Article  Google Scholar 

  14. Gorawski, M., Chechelski, R.: Online balancing of aR-tree indexed distributed spatial data warehouse. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Wasniewski, J. (eds.) Parallel Processing and Applied Mathematics, LNCS, vol. 3911, pp. 470–477. Springer, Berlin (2005)

    Chapter  Google Scholar 

  15. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data, pp. 47–57, Boston (1984)

  16. Hacigumus, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proceedings of the 18th International Conference on Data Engineering, pp. 29–38, San Jose (2002)

  17. Hacigumus, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted data in the database-service-provider model. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, pp. 216–227. Madison (2002)

  18. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. SIGMOD Rec. 25(2), 205–216 (1996). doi:10.1145/235968.233333

    Article  Google Scholar 

  19. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 2nd edn. John Wiley & Sons Inc, New York, NY, USA (2002)

    Google Scholar 

  20. Malinowski, E., Zimányi, E.: Representing spatiality in a conceptual multidimensional model. In: Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems, pp. 12–22, Washington (2004)

  21. Malinowski, E., Zimányi, E.: Requirements specification and conceptual modelling for spatial data warehouses. In: Proceedings of the OTM Confederated International Workshops and Posters 2006 on the Move to Meaningful Internet Systems: OTM 2006 Workshops, pp. 1616–1625, Montpellier (2006)

  22. Mateus, R.C., Siqueira, T.L.L., Times, V.C., Ciferri, R.R., Ciferri, C.D.A.: How does the spatial data redundancy affect query performance in geographic data warehouses? J. Inf. Data Manage. 1(3), 519–534 (2010)

    Google Scholar 

  23. Mell, P., Grance, T.: The NIST definition of cloud computing. Technical Report pp. 800–145, National Institute of Standards and Technology (NIST) (2011)

  24. O’Neil, P., Graefe, G.: Multi-table joins through bitmapped join indices. ACM SIGMOD Rec. 24(3), 8–11 (1995). doi:10.1145/211990.212001

    Article  Google Scholar 

  25. O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The star schema benchmark and augmented fact table indexing. In: Nambiar, R., Poess, M. (eds.) Performance Evaluation and Benchmarking, Lecture Notes in Computer Science, pp. 237–252. Springer, Berlin (2009)

    Google Scholar 

  26. O’Neil, P., Quass, D.: Improved Query Performance with Variant Indexes. In: ACM SIGMOD International Conference on Management of Data, pp. 38–49. Tucson (1997)

  27. Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial data warehouses. In: Proceedings of the 7th International Symposium on Advances in Spatial and Temporal Databases, pp. 443–459. Redondo Beach (2001)

  28. Rivest, S., Bédard, Y., Proulx, M.J., Nadeau, M., Hubert, F., Pastor, J.: SOLAP technology: merging business intelligence with geospatial technology for interactive spatio-temporal exploration and analysis of data. ISPRS J. Photogramm. Remote Sens. 60(1), 17–33 (2005). doi:10.1016/j.isprsjprs.2005.10.002

    Article  Google Scholar 

  29. Ruiz, C.V., Times, V.C.: A taxonomy of SOLAP operators. In: Proceedings of the XXIV Brazilian Symposium on Databases, pp. 151–165, Fortaleza (2009)

  30. Silva, J., Oliveira, A.G., Fidalgo, R.N., Salgado, A.C., Times, V.C.: Modelling and querying geographical data warehouses. Inf. Syst. 35(5), 592–614 (2010). doi:10.1016/j.is.2009.10.005

    Article  Google Scholar 

  31. Siqueira, T.L.L., Ciferri, C.D.A., Times, V.C., Ciferri, R.R.: The SB-index and the HSB-index: efficient indices for spatial data warehouses. GeoInformatica 16(1), 165–205 (2011). doi:10.1007/s10707-011-0128-5

    Article  Google Scholar 

  32. Siqueira, T.L.L., Ciferri, C.D.A., Times, V.C., Oliveira, A.G., Ciferri, R.R.: The impact of spatial data redundancy on SOLAP query performance. J. Braz. Comput. Soc. 15(2), 19–34 (2009)

    Article  Google Scholar 

  33. Siqueira, T.L.L., Ciferri, R.R., Times, V.C., Ciferri, C.D.A.: Benchmarking spatial data warehouses. In: Proceedings of the 12th International Conference on Data Warehousing and Knowledge Discovery, pp. 40–51. Bilbao (2010)

  34. Sosinsky, B.: Cloud Computing Bible, 1st edn. Wiley, New York (2011)

    Google Scholar 

  35. Stockinger, K., Wu, K.: Bitmap indexes for data warehouses. In: Data warehouses and OLAP. IGI Global (2006)

  36. Vaisman, A.A., Zimányi, E.: Spatial data warehouses, chap. 11, pp. 427–474. Data-Centric Systems and Applications. Springer (2014)

  37. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds: towards a cloud definition. Comput. Commun. Rev. 39(1), 50–55 (2008). doi:10.1145/1496091.1496100

    Article  Google Scholar 

  38. Wu, K., Otoo, E.J., Shoshani, A.: Optimizing bitmap indices with efficient compression. ACM Trans. Database Syst. 31(1), 1–38 (2006)

    Article  Google Scholar 

  39. Wu, K., Stockinger, K., Shoshani, A.: Breaking the curse of cardinality on bitmap indexes. In: Proceedings of the 20th International Conference on Scientific and Statistical Database Management, pp. 348–365. Hong Kong (2008)

  40. Zhang, X., Ai, J., Wang, Z., Lu, J., Meng, X.: An efficient multi-dimensional index for cloud data management. In: Proceedings of the 1st International Workshop on Cloud Data Management, pp. 17–24. Hong Kong (2009)

Download references

Acknowledgments

This work has been supported by the following Brazilian research agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Financiadora de Estudos e Projetos (FINEP). The second author has been funded by grant number 229675/2013-1 from CNPq and grant number 14/14103-9 from FAPESP/CAPES. The third author has been funded by grant number 246263/2012-1 from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valéria Cesário Times.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateus, R.C., Siqueira, T.L.L., Times, V.C. et al. Spatial data warehouses and spatial OLAP come towards the cloud: design and performance. Distrib Parallel Databases 34, 425–461 (2016). https://doi.org/10.1007/s10619-015-7176-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10619-015-7176-z

Keywords

Navigation