[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Central node identification via weighted kernel density estimation

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

The detection of central nodes in a network is a fundamental task in network science and graph data analysis. During the past decades, numerous centrality measures have been presented to characterize what is a central node. However, few studies address this issue from a statistical inference perspective. In this paper, we formulate the central node identification issue as a weighted kernel density estimation problem on graphs. Such a formulation provides a generic framework for recognizing central nodes. On one hand, some existing centrality evaluation metrics can be unified under this framework through the manipulation of kernel functions. On the other hand, more effective methods for node centrality assessment can be developed based on proper weighting coefficient specification. Experimental results on 20 simulated networks and 53 real networks show that our method outperforms both six prior state-of-the-art centrality measures and two recently proposed centrality evaluation methods. To the best of our knowledge, this is the first piece of work that addresses the central node identification issue via weighted kernel density estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anderson RM, May RM (1992) Infectious diseases of humans: dynamics and control. Oxford University Press, New York

    Google Scholar 

  • Batagelj V, Mrvar A (2006) Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/

  • Bavelas A (1948) A mathematical model for group structures. Hum Organ 7(3):16–30

    Article  Google Scholar 

  • Bian R, Koh YS, Dobbie G, Divoli A (2019) Identifying top-k nodes in social networks: a survey. ACM Computing Surveys 52(1)

  • Boldi P, Vigna S (2014) Axioms for centrality. Internet Math 10(3–4):222–262

    Article  MathSciNet  Google Scholar 

  • Bonacich P (1987) Power and centrality: a family of measures. Am J Sociol 92(5):1170–1182

    Article  Google Scholar 

  • Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30:107–117

    Article  Google Scholar 

  • Callon M (1990) Techno-economic networks and irreversibility. Sociol Rev 38(1):132–161

    Article  Google Scholar 

  • Castellano C, Pastor-Satorras R (2010) Thresholds for epidemic spreading in networks. Phys Rev Lett 105(21):218701

    Article  Google Scholar 

  • Chen D, Lü L, Shang M-S, Zhang Y-C, Zhou T (2012) Identifying influential nodes in complex networks. Phys A Stat Mech Appl 391(4):1777–1787

    Article  Google Scholar 

  • Das K, Samanta S, Pal M (2018) Study on centrality measures in social networks: a survey. Soc Netw Anal Min 8:13

    Article  Google Scholar 

  • De Meo P, Levene M, Messina F, Provetti A (2020) A general centrality framework-based on node navigability. IEEE Trans Knowl Data Eng 32(11):2088–2100

    Article  Google Scholar 

  • Deng Z, Chung F-L, Wang S (2008) FRSDE: fast reduced set density estimator using minimal enclosing ball approximation. Pattern Recogn 41(4):1363–1372

    Article  Google Scholar 

  • Erdös P, Rényi A (1959) On random graphs I. Publ Mathematicae 6:290–297

    Article  MathSciNet  Google Scholar 

  • Eubank S, Guclu H, Kumar VA, Marathe MV, Srinivasan A, Toroczkai Z, Wang N (2004) Modelling disease outbreaks in realistic urban social networks. Nature 429(6988):180–184

    Article  Google Scholar 

  • Fan T, Lü L, Shi D, Zhou T (2021) Characterizing cycle structure in complex networks. Commun Phys 4:272

    Article  Google Scholar 

  • Frank O (2002) Using centrality modeling in network surveys. Soc Netw 24(4):385–394

    Article  Google Scholar 

  • Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239

    Article  Google Scholar 

  • Girolami M, He C (2003) Probability density estimation from optimally condensed data samples. IEEE Trans Pattern Anal Mach Intell 25(10):1253–1264

    Article  Google Scholar 

  • Goh KI, Kahng B, Kim D (2001) Universal behavior of load distribution in scale-free networks. Phys Rev Lett 87:278701

    Article  Google Scholar 

  • Gramacki A (2018) Nonparametric kernel density estimation and its computational aspects, vol 37. Springer, Gewerbestrasse

    Google Scholar 

  • Gurney K (1997) An introduction to neural networks. UCL press, New York

    Book  Google Scholar 

  • He C, Girolami M (2004) Novelty detection employing an \({L}_2\) optimal non-parametric density estimator. Pattern Recogn Lett 25(12):1389–1397

    Article  Google Scholar 

  • Hirsch JE (2005) An index to quantify an individual’s scientific research output. Proc Natl Acad Sci USA 102(46):16569–16572

    Article  Google Scholar 

  • Jackson MO, Watts A (2002) The evolution of social and economic networks. J Econ Theory 106(2):265–295

    Article  MathSciNet  Google Scholar 

  • Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93

    Article  Google Scholar 

  • Kennedy D, Selverston AI, Remler MP (1969) Analysis of restricted neural networks. Science 164(3887):1488–1496

    Article  Google Scholar 

  • Kim TT, Poor HV (2011) Strategic protection against data injection attacks on power grids. IEEE Trans Smart Grid 2(2):326–333

    Article  Google Scholar 

  • Kiss IZ, Miller JC, Simon PL (2017) Mathematics of epidemics on networks. Springer, Gewerbestrasse

    Book  Google Scholar 

  • Liu X, Hong Z, Liu J, Lin Y, Rodríguez-Patón A, Zou Q, Zeng X (2020) Computational methods for identifying the critical nodes in biological networks. Brief Bioinform 21(2):486–497

    Article  Google Scholar 

  • Liu Y, Ruppert D (2021) Density estimation on a network. Comput Stat Data Anal 156:107128

    Article  MathSciNet  Google Scholar 

  • Liu Y, Chen W, He Z (2021a) Essential protein recognition via community significance. IEEE Trans Comput Biol Bioinform 18(6):2788–2794

    Article  Google Scholar 

  • Liu Y, Wei X, Chen W, Hu L, He Z (2021b) A graph-traversal approach to identify influential nodes in a network. Patterns 2(9):100321

    Article  Google Scholar 

  • Liu Y, Liang H, Zou Q, He Z (2022) Significance-based essential protein discovery. IEEE Trans Comput Biol Bioinform 19(1):633–642

    Article  Google Scholar 

  • Lordan O, Sallan JM, Simo P (2014) Study of the topology and robustness of airline route networks from the complex network approach: a survey and research agenda. J Transp Geogr 37:112–120

    Article  Google Scholar 

  • Lordan O, Sallan JM, Escorihuela N, Gonzalez-Prieto D (2016) Robustness of airline route networks. Phys A Stat Mech Appl 445:18–26

    Article  Google Scholar 

  • Lü L, Chen D, Ren X, Zhang Q, Zhang Y, Zhou T (2016a) Vital nodes identification in complex networks. Phys Rep 650:1–63

    Article  MathSciNet  Google Scholar 

  • Lü L, Zhou T, Zhang Q-M, Stanley HE (2016b) The H-index of a network node and its relation to degree and coreness. Nat Commun 7:10168

    Article  Google Scholar 

  • Miller JC, Ting T (2019) EoN (epidemics on networks): a fast, flexible python package for simulation, analytic approximation, and analysis of epidemics on networks. J Open Source Softw 4(44):1731

    Article  Google Scholar 

  • Morone F, Makse HA (2015) Influence maximization in complex networks through optimal percolation. Nature 524(7563):65–68

    Article  Google Scholar 

  • Newman ME (2002) Spread of epidemic disease on networks. Phys Rev E 66:016128

    Article  MathSciNet  Google Scholar 

  • Okabe A, Satoh T, Sugihara K (2009) A kernel density estimation method for networks, its computational method and a GIS-based tool. Int J Geogr Inf Sci 23(1):7–32

    Article  Google Scholar 

  • Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076

    Article  MathSciNet  Google Scholar 

  • Rossi RA, Ahmed NK (2015) The network data repository with interactive graph analytics and visualization. In: AAAI . https://networkrepository.com

  • Sabidussi G (1966) The centrality index of a graph. Psychometrika 31(4):581–603

    Article  MathSciNet  Google Scholar 

  • Sain SR (1994) Adaptive kernel density estimation. Rice University, Houston

    Google Scholar 

  • Siegel S (1956) Nonparametric statistics for the behavioral sciences. McGraw-hill, New York

    Google Scholar 

  • Stephenson K, Zelen M (1989) Rethinking centrality: methods and examples. Soc Netw 11(1):1–37

    Article  MathSciNet  Google Scholar 

  • Terrell GR, Scott DW (1992) Variable kernel density estimation. Ann Stat 20:1236–1265

    Article  MathSciNet  Google Scholar 

  • Wang T-C, Phoa FKH (2016) Focus statistics for testing network centrality on uncorrelated random graphs. Netw Sci 4(4):460–473

    Article  Google Scholar 

  • Wang S, Wang J, Chung F.I (2014) Kernel density estimation, kernel methods, and fast learning in large data sets. IEEE Trans Cybern 44(1):1–20

    Article  Google Scholar 

  • Waniek M, Michalak TP, Rahwan T, Wooldridge M (2017) On the construction of covert networks. In: Proceedings of the 16th conference on autonomous agents and multiagent systems. pp 1341–1349

  • Xie Z, Yan J (2008) Kernel density estimation of traffic accidents in a network space. Comput Environ Urban Syst 32(5):396–406

    Article  Google Scholar 

  • Yang Y, Nishikawa T, Motter AE (2017) Small vulnerable sets determine large network cascades in power grids. Science 358(6365):eaan3184

    Article  Google Scholar 

  • Zhang J, Xu X, Li P, Zhang K, Small M (2011) Node importance for dynamical process on networks: a multiscale characterization. Chaos Interdiscip J Nonlinear Sci 21:016107

    Article  Google Scholar 

  • Zhang H, Zhong S, Deng Y, Cheong KH (2021) LFIC: identifying influential nodes in complex networks by local fuzzy information centrality. IEEE Trans Fuzzy Syst 30(8):3284–3296

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Natural Science Foundation of China under Grant No. 61972066 and the Dalian Young Science and Technology Talent Support Program No. 2023RQ056. Thanks to Prof. Pasquale De Meo from University of Messina for providing the source codes of Potential Gain. Thanks to Dr. Marcin Waniek from New York University Abu Dhabi for providing the source codes of the “captain network”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengyou He.

Additional information

Responsible editor: Evangelos Papalexakis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Feng, X., Lou, J. et al. Central node identification via weighted kernel density estimation. Data Min Knowl Disc 38, 1417–1439 (2024). https://doi.org/10.1007/s10618-024-01003-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-024-01003-4

Keywords

Navigation