[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Feature extraction from unequal length heterogeneous EHR time series via dynamic time warping and tensor decomposition

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

Electronic Health Records (EHR) data is routinely generated patient data that can provide useful information for analytical tasks such as disease detection and clinical event prediction. However, temporal EHR data such as physiological vital signs and lab test results are particularly challenging. Temporal EHR features typically have different sampling frequencies; such examples include heart rate (measured almost continuously) and blood test results (a few times during a patient’s entire stay). Different patients also have different length of stays. Existing approaches for temporal EHR sequence extraction either ignore the temporal pattern within features, or use a predefined window to select a section of the sequences without taking into account all the information. We propose a novel approach to tackle the issue of irregularly sampled, unequal length EHR time series using dynamic time warping and tensor decomposition. We use DTW to learn the pairwise distances for each temporal feature among the patient cohort and stack the distance matrices into a tensor. We then decompose the tensor to learn the latent structure, which is consequently used for patient representation. Finally, we use the patient representation for in-hospital mortality prediction. We illustrate our method on two cohorts from the MIMIC-III database: the sepsis and the acute kidney failure cohorts. We show that our method produces outstanding classification performance in terms of AUROC, AUPRC and accuracy compared with the baseline methods: LSTM and DTW-KNN. In the end we provide a detailed analysis on the feature importance for the interpretability of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Panagiotis Papapetrou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Fanaee-T, H. & Thoresen, M. Feature extraction from unequal length heterogeneous EHR time series via dynamic time warping and tensor decomposition. Data Min Knowl Disc 35, 1760–1784 (2021). https://doi.org/10.1007/s10618-020-00724-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-020-00724-6

Keywords

Navigation