[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Flow cytometry: retrospective, fundamentals and recent instrumentation

  • Review
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Flow cytometry is a complete technology given to biologists to study cellular populations with high precision. This technology elegantly combines sample dimension, data acquisition speed, precision and measurement multiplicity. Beyond the statistical aspect, flow cytometry offers the possibility to physically separate sub-populations. These performances come from the common endeavor of physicists, biophysicists, biologists and computer engineers, who succeeded, by providing new concepts, to bring flow cytometry to current maturity. The aim of this paper is to present a complete retrospective of the technique and remind flow cytometry fundamentals before focusing on recent commercial instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arndt-Jovin DJ, Jovin TM (1974) Computer-controlled multiparameter analysis and sorting of cells and particles. J Histochem Cytochem 22:622–625

    Article  CAS  Google Scholar 

  • Ashcroft RG, Lopez PA (2000) Commercial high speed machines open new opportunities in high throughput flow cytometry (HTFC). J Immunol Methods 243:13–24

    Article  CAS  Google Scholar 

  • Bonner WA, Hulett HR, Sweet RG, Herzenberg LA (1972) Fluorescence activated cell sorting. Rev Sci Instrum 43:404–409

    Article  CAS  Google Scholar 

  • Brecher G, Schneiderman M, Williams GZ (1956) Evaluation of electronic red blood cell counter. Am J Clin Pathol 26:1439–1449

    CAS  Google Scholar 

  • Chapman GV (2000) Instrumentation for flow cytometry. J Immunol Methods 243:3–12

    Article  CAS  Google Scholar 

  • Cho SH, Godin JM, Chen CH, Qiao W, Lee H, Lo YH (2010a) Review article: recent advancements in optofluidic flow cytometer. Biomicrofluidics 4:43001. doi:10.1063/1.3511706

  • Cho SH, Qiao W, Tsai FS, Yamashita K, Lo YH (2010b) Lab-on-a-chip flow cytometer employing color-space-time coding. Appl Phys Lett 97:093704, 1–3 . doi:10.1063/1.3481695

    Google Scholar 

  • Coons AH, Kaplan MH (1950) Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 91(1):1–13

    Article  CAS  Google Scholar 

  • Coons AH, Creech HJ, Jones RN, Brliner E (1942) The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J Immunol 45:159

    CAS  Google Scholar 

  • Crissman HA, Steinkamp JA (1982) Rapid, one step staining procedures for analysis of cellular DNA and protein by single and dual laser flow cytometry. Cytometry 3:84–90. doi:10.1002/cyto.990030204

    Article  CAS  Google Scholar 

  • Crosland-Taylor PJ (1953) A device for counting small particles suspended in a fluid through a tube. Nature 171:37–38

    Article  CAS  Google Scholar 

  • Curbelo R, Schildkraut ER, Hirschfeld T, Webb RH, Block MJ, Shapiro HM (1976) A generalized machine for automated flow cytology system design. J Histochem Cytochem 24:388–395

    Article  CAS  Google Scholar 

  • De Rosa SC, Roederer M (2001) Eleven-color flow cytometry. A powerful tool for elucidation of the complex immune system. Clin Lab Med 21:697–712, vii

    Google Scholar 

  • De Rosa SC, Herzenberg LA, Roederer M (2001) 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat Med 7:245–248. doi:10.1038/84701

    Article  Google Scholar 

  • Dittrich W, Gohde W (1969) Impulse fluorometry of single cells in suspension. Z Naturforsch B 24:360–361

    CAS  Google Scholar 

  • Fulwyler MJ (1965) Electronic separation of biological cells by volume. Science 150:910–911

    Article  CAS  Google Scholar 

  • Fulwyler MJ (1977) Hydrodynamic orientation of cells. J Histochem Cytochem 25:781–783

    Article  CAS  Google Scholar 

  • Goddard G, Kaduchak G (2005) Ultrasonic particle concentration in a line-driven cylindrical tube. J Acoust Soc Am 117:3440–3447

    Article  CAS  Google Scholar 

  • Goddard G, Martin JC, Graves SW, Kaduchak G (2006) Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer. Cytometry A 69:66–74. doi:10.1002/cyto.a.20205

    Google Scholar 

  • Goddard GR, Sanders CK, Martin JC, Kaduchak G, Graves SW (2007) Analytical performance of an ultrasonic particle focusing flow cytometer. Anal Chem 79:8740–8746. doi:10.1021/ac071402t

    Article  CAS  Google Scholar 

  • Gray JW, Dean PN, Fuscoe JC, Peters DC, Trask BJ, van den Engh GJ, Van Dilla MA (1987) High-speed chromosome sorting. Science 238:323–329

    Article  CAS  Google Scholar 

  • Greimers R, Trebak M, Moutschen M, Jacobs N, Boniver J (1996) Improved four-color flow cytometry method using fluo-3 and triple immunofluorescence for analysis of intracellular calcium ion ([Ca2 +]i) fluxes among mouse lymph node B- and T-lymphocyte subsets. Cytometry 23:205–217. doi:10.1002/(SICI)1097-0320(19960301)23:3<205:AID-CYTO4>3.0.CO;2-H

    Article  CAS  Google Scholar 

  • Gucker FT Jr, O’Konski CT (1947) A photoelectronic counter for colloidal particles. J Am Chem Soc 69:2422–2431

    Article  CAS  Google Scholar 

  • Hulett HR, Bonner WA, Sweet RG, Herzenberg LA (1973) Development and application of a rapid cell sorter. Clin Chem 19:813–816

    CAS  Google Scholar 

  • Ibrahim SF, van den Engh G (2003) High-speed cell sorting: fundamentals and recent advances. Curr Opin Biotechnol 14:5–12

    Article  CAS  Google Scholar 

  • Kamentsky LA, Melamed MR (1967) Spectrophotometric cell sorter. Science 156:1364–1365

    Article  CAS  Google Scholar 

  • Kamentsky LA, Melamed MR, Derman H (1965) Spectrophotometer: new instrument for ultrarapid cell analysis. Science 150:630–631

    Article  CAS  Google Scholar 

  • Leif SB, Leif RC, Auer R (1985) The EPICS C analyzer. An ergometrically designed flow cytometer computer system. Anal Quant Cytol Histol 7:187–191

    CAS  Google Scholar 

  • LePecq JB, Paoletti C (1967) A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J Mol Biol 27:87–106

    Article  CAS  Google Scholar 

  • Loken MR, Parks DR, Herzenberg LA (1977) Two-color immunofluorescence using a fluorescence-activated cell sorter. J Histochem Cytochem 25:899–907

    Article  CAS  Google Scholar 

  • Mansberg HP, Saunders AM, Groner W (1974) The Hemalog D white cell differential system. J Histochem Cytochem 22:711–724

    Article  CAS  Google Scholar 

  • Mattern CF, Brackett FS, Olson BJ (1957) Determination of number and size of particles by electrical gating: blood cells. J Appl Physiol 10:56–70

    CAS  Google Scholar 

  • Moldavan A (1934) Photo-Electric Technique for the Counting of Microscopical Cells. Science 80:188–189. doi:10.1126/science.80.2069.188

    Article  CAS  Google Scholar 

  • Mullaney PF, Van Dilla MA, Coulter JR, Dean PN (1969) Cell sizing: a light scattering photometer for rapid volume determination. Rev Sci Instrum 40:1029–1032

    Article  CAS  Google Scholar 

  • Novo D, Wood J (2008) Flow cytometry histograms: transformations, resolution, and display. Cytometry A 73:685–692. doi:10.1002/cyto.a.20592

    Google Scholar 

  • Nunez R (2001) Flow cytometry: principles and instrumentation. Curr Issues Mol Biol 3:39–45

    CAS  Google Scholar 

  • Ornstein L, Ansley HR (1974) Spectral matching of classical cytochemistry to automated cytology. J Histochem Cytochem 22:453–469

    Article  CAS  Google Scholar 

  • Parks DR, Roederer M, Moore WA (2006) A new “Logicle” display method avoids deceptive effects of logarithmic scaling for low signals and compensated data. Cytometry A 69:541–551. doi:10.1002/cyto.a.20258

    Google Scholar 

  • Perfetto SP, Ambrozak DR, Koup RA, Roederer M (2003) Measuring containment of viable infectious cell sorting in high-velocity cell sorters. Cytometry A 52:122–130. doi:10.1002/cyto.a.10033

    Article  Google Scholar 

  • Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4:648–655. doi:10.1038/nri1416

    Article  CAS  Google Scholar 

  • Peters D, Branscomb E, Dean P, Merrill T, Pinkel D, Van Dilla M, Gray JW (1985) The LLNL high-speed sorter: design features, operational characteristics, and biological utility. Cytometry 6:290–301. doi:10.1002/cyto.990060404

    Article  CAS  Google Scholar 

  • Petersen TW, van den Engh G (2003) Stability of the breakoff point in a high-speed cell sorter. Cytometry A 56:63–70. doi:10.1002/cyto.a.10090

    Article  Google Scholar 

  • Reinherz EL, Kung PC, Goldstein G, Schlossman SF (1979) Separation of functional subsets of human T cells by a monoclonal antibody. Proc Natl Acad Sci USA 76:4061–4065

    Article  CAS  Google Scholar 

  • Reynolds O (1883) An experimental investigation of the circumstances which determine whether the motion of water in parallel channels shall be direct or sinuous and of the law of resistance in parallel channels. Philosoph Trans R Soc 174:935–982

    Google Scholar 

  • Salzman GC, Crowell JM, Goad CA, Hansen KM, Hiebert RD, LaBauve PM, Martin JC, Ingram ML, Mullaney PF (1975a) A flow-system multiangle light-scattering instrument for cell characterization. Clin Chem 21:1297–1304

    CAS  Google Scholar 

  • Salzman GC, Crowell JM, Martin JC, Trujillo TT, Romero A, Mullaney PF, LaBauve PM (1975b) Cell classification by laser light scattering: identification and separation of unstained leukocytes. Acta Cytol 19:374–377

    CAS  Google Scholar 

  • Salzman GC, Wilder ME, Jett JH (1979) Light scattering with stream-in-air flow systems. J Histochem Cytochem 27:264–267

    Article  CAS  Google Scholar 

  • Schmid I, Dean PN (1997) Introduction to the biosafety guidelines for sorting of unfixed cells. Cytometry 28:97–98

    Article  CAS  Google Scholar 

  • Schmid I, Nicholson JK, Giorgi JV, Janossy G, Kunkl A, Lopez PA, Perfetto S, Seamer LC, Dean PN (1997) Biosafety guidelines for sorting of unfixed cells. Cytometry 28:99–117

    Article  CAS  Google Scholar 

  • Shapiro HM (1977) Fluorescent dyes for differential counts by flow cytometry: does histochemistry tell us much more than cell geometry? J Histochem Cytochem 25:976–989

    Article  CAS  Google Scholar 

  • Shapiro HM (2003) Practical flow cytometry. Fourth edition edn, Wiley-liss, New Jersey (USA)

    Book  Google Scholar 

  • Shapiro HM, Perlmutter NG (2001) Violet laser diodes as light sources for cytometry. Cytometry 44:133–136

    Article  CAS  Google Scholar 

  • Shapiro HM, Schildkraut ER, Curbelo R, Laird CW, Turner B, Hirschfeld T (1976) Combined blood cell counting and classification with fluorochrome stains and flow instrumentation. J Histochem Cytochem 24:396–401

    Article  CAS  Google Scholar 

  • Shapiro HM, Schildkraut ER, Curbelo R, Turner RB, Webb RH, Brown DC, Block MJ (1977) Cytomat-R: a computer-controlled multiple laser source multiparameter flow cytophotometer system. J Histochem Cytochem 25:836–844

    Article  CAS  Google Scholar 

  • Snow C (2004) Flow cytometer electronics. Cytometry A 57:63–69. doi:10.1002/cyto.a.10120

    Article  Google Scholar 

  • Steen HB (1990) Light scattering measurement in an arc lamp-based flow cytometer. Cytometry 11:223–230. doi:10.1002/cyto.990110202

    Article  CAS  Google Scholar 

  • Steinkamp JA, Fulwyler MJ, Coulter JR, Hiebert RD, Horney JL, Mullancy PF (1973) A new multiparameter separator for microscopic particles and biological cells. Rev Sci Instrum 44:1301–1310

    Article  CAS  Google Scholar 

  • Steinkamp JA, Romero A, Horan PK, Crissman HA (1974) Multiparameter analysis and sorting of mammalian cells. Exp Cell Res 84:15–23

    Article  CAS  Google Scholar 

  • Steinkamp JA, Orlicky DA, Crissman HA (1979) Dual-laser flow cytometry of single mammalian cells. J Histochem Cytochem 27:273–276

    Article  CAS  Google Scholar 

  • Sweet RG (1965) High frequency recording with electrostatically deflected ink jets. Rev Sci Instrum 36:131–136

    Article  Google Scholar 

  • van den Engh G, Stokdijk W (1989) Parallel processing data acquisition system for multilaser flow cytometry and cell sorting. Cytometry 10:282–293. doi:10.1002/cyto.990100307

    Article  Google Scholar 

  • Van Dilla MA, Trujillo TT, Mullaney PF, Coulter JR (1969) Cell microfluorometry: a method for rapid fluorescence measurement. Science 163:1213–1214

    Article  Google Scholar 

  • Ward M, Turner P, DeJohn M, Kaduchak G (2009) Fundamentals of Acoustic Cytometry. Current Protocols in Cytometry 1:1–12

    Google Scholar 

  • Watson JV (1999) The early fluidic and optical physics of cytometry. Cytometry 38:2–14; discussion 1

    Google Scholar 

The latest specifications of commercial instrumentation can be found on the web pages of the manufacturers:

Download references

Conflict of interests

The authors state that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Picot.

Additional information

Julien Picot and Coralie L. Guerin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picot, J., Guerin, C.L., Le Van Kim, C. et al. Flow cytometry: retrospective, fundamentals and recent instrumentation. Cytotechnology 64, 109–130 (2012). https://doi.org/10.1007/s10616-011-9415-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-011-9415-0

Keywords

Navigation