[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Dynamic structural symmetry breaking for constraint satisfaction problems

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

In recent years, symmetry breaking for constraint satisfaction problems (CSPs) has attracted considerable attention. Various general schemes have been proposed to eliminate symmetries. In general, these schemes may take exponential space or time to eliminate all the symmetries. We identify several classes of CSPs that encompass many practical problems and for which symmetry breaking for various forms of value or variable interchangeability is tractable using dedicated search procedures. We also show the limits of efficient symmetry breaking for such dominance-detection schemes by proving intractability results for some classes of CSPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ahuja, R., Magnati, T., & Orlin, J. (1993). Network flows. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  2. Backofen, R., & Will, S. (1999). Excluding symmetries in constraint-based search. In J. Jaffar (Ed.), Proceedings of CP’99, LNCS (Vol. 1713, pp. 73–87). New York: Springer.

    Google Scholar 

  3. Barnier, N., & Brisset, P. (2002). Solving the Kirkman’s schoolgirl problem in a few seconds. In P. Van Hentenryck (Ed.), Proceedings of CP’02, LNCS (Vol. 2470. pp. 477–491). New York: Springer.

    Google Scholar 

  4. Cameron, P. (1999). Permutation groups. Number 45 in London Mathematical Society Student Texts. Cambridge: Cambridge University Press.

    Google Scholar 

  5. Cohen, D. A., Jeavons, P., Jefferson, C., Petrie, K. E., & Smith, B. M. (2005). Symmetry definitions for constraint satisfaction problems. In P. van Beek (Ed.) Proceedings of CP’05, LNCS (Vol. 3709, pp. 17–31). New York: Springer.

    Google Scholar 

  6. Colbourn, C. J., & Dinitz, J. H. (Eds.) (1996). The CRC handbook of combinatorial designs. Boca Raton: CRC.

    MATH  Google Scholar 

  7. Crawford, J. M., Ginsberg, M., Luks, E., & Roy, A. (1996). Symmetry-breaking predicates for search problems. In L. C. Aiello, J. Doyle, & S. C. Shapiro (Eds.), Proceedings of KR’96 (pp. 148–159). San Francisco: Morgan Kaufmann.

    Google Scholar 

  8. Er, M. C. (1988). A fast algorithm for generating set partitions. The Computer Journal, 31(3), 283–284.

    Article  MATH  Google Scholar 

  9. Fahle, T., Schamberger, S., & Sellmann, M. (2001). Symmetry breaking. In T. Walsh (Ed.), Proceedings of CP’01, LNCS (Vol. 2239, pp. 93–107). New York: Springer.

    Google Scholar 

  10. Flener, P., Frisch, A. M., Hnich, B., Kızıltan, Z., Miguel, I., Pearson, J., et al. (2001). Symmetry in matrix models. In P. Flener & J. Pearson (Eds.), Proceedings of SymCon’01. http://www.it.uu.se/research/group/astra/SymCon01/.

  11. Flener, P., Frisch, A. M., Hnich, B., Kızıltan, Z., Miguel, I., Pearson, J., et al. (2002). Breaking row and column symmetries in matrix models. In P. Van Hentenryck (Ed.), Proceedings of CP’02, LNCS (Vol. 2470, pp. 462–476). New York: Springer.

    Google Scholar 

  12. Flener, P., Pearson, J., Sellmann, M., & Van Hentenryck, P. (2006). Static and dynamic structural symmetry breaking. In F. Benhamou (Ed.), Proceedings of CP’06, LNCS (Vol. 4204, pp. 695–699). New York: Springer.

    Google Scholar 

  13. Flener, P., Pearson, J., & Sellmann, M. (2008). Static and dynamic structural symmetry breaking. Technical Report 2008-023, Department of Information Technology, Uppsala University, Sweden, September. http://www.it.uu.se/research/reports/2008-023/.

  14. Flener, P., Pearson, J., Sellmann, M., & Ågren, M. (2007). Structural symmetry breaking for constraint satisfaction problems. Technical Report 2007-032, Department of Information Technology, Uppsala University, Sweden, November. http://www.it.uu.se/research/reports/2007-032/.

  15. Focacci, F., & Milano, M. (2001). Global cut framework for removing symmetries. In T. Walsh (Ed.), Proceedings of CP’01, LNCS (Vol. 2239, pp. 77–92). New York: Springer.

    Google Scholar 

  16. Freuder, E. C. (1991). Eliminating interchangeable values in constraint satisfaction problems. In Proceedings of AAAI’91 (pp. 227–233). Menlo Park: AAAI.

    Google Scholar 

  17. Gent, I. P., & Smith, B. M. (2000). Symmetry breaking during search in constraint programming. In Proceedings of ECAI’00 (pp. 599–603). Amsterdam: IOS.

    Google Scholar 

  18. Heller, D. S., & Sellmann, M. (2006). Dynamic symmetry breaking restarted. In F. Benhamou (Ed.), Proceedings of CP’06, LNCS (Vol. 4204, pp. 721–725). New York: Springer.

    Google Scholar 

  19. Kubale, M., & Jackowski, B. (1985). A generalized implicit enumeration algorithm for graph coloring. CACM, 28(4), 412–418.

    Google Scholar 

  20. Law, Y., & Lee, J. (2006). Symmetry breaking constraints for value symmetries in constraint satisfaction. Constraints, 11(2–3), 221–267.

    Article  MATH  MathSciNet  Google Scholar 

  21. Law, Y., Lee, J., Walsh, T., & Yip, J. (2007). Breaking symmetry of interchangeable variables and values. In C. Bessière (Ed.), Proceedings of CP’07, LNCS (Vol. 4741, pp. 423–437). New York: Springer.

    Google Scholar 

  22. Meseguer, P., & Torras, C. (2001). Exploiting symmetries within constraint satisfaction search. Artificial Intelligence, 129(1–2), 133–163.

    Article  MATH  MathSciNet  Google Scholar 

  23. Puget, J.-F. (1993). On the satisfiability of symmetrical constrained satisfaction problems. In J. Komorowski & Z. Raś (Ed.), Proceedings of ISMIS’93, LNAI (Vol. 689, pp. 350–361). New York: Springer.

    Google Scholar 

  24. Puget, J.-F. (2002). Symmetry breaking revisited. In P. Van Hentenryck (Ed.), Proceedings of CP’02, LNCS (Vol. 2470, pp. 446–461). New York: Springer.

    Google Scholar 

  25. Puget, J.-F. (2006). An efficient way of breaking value symmetries. In Proceedings of AAAI’06. Menlo Park: AAAI.

    Google Scholar 

  26. Roney-Dougal, C. M., Gent, I. P., Kelsey, T., & Linton, S. (2004). Tractable symmetry breaking using restricted search trees. In R. L. de Mántaras & L. Saitta (Eds.), Proceedings of ECAI’04 (pp. 211–215). Amsterdam: IOS.

    Google Scholar 

  27. Sellmann, M., & Van Hentenryck, P. (2005). Structural symmetry breaking. In Proceedings of IJCAI’05 (pp. 298–303). IJCAI.

  28. Sellmann, M., Gellermann, T., & Wright, R. (2007). Cost-based filtering for shorter path constraints. Constraints, 12(2), 207–238.

    Article  MATH  MathSciNet  Google Scholar 

  29. Shlyakhter, I. (2001). Generating effective symmetry-breaking predicates for search problems. Electronic Notes in Discrete Mathematics (Vol. 9). Proceedings of SAT’01.

  30. Smith, B. M. (2001). Reducing symmetry in a combinatorial design problem. In C. Gervet & M. Wallace (Eds.), Proceedings of CP-AI-OR’01.

  31. Smith, B. M., Brailsford, S. C., Hubbard, P. M., & Williams, H. P. (1996). The progressive party problem: Integer linear programming and constraint programming compared. Constraints, 1, 119–138.

    Article  MathSciNet  Google Scholar 

  32. Van Hentenryck, P. (2002). Constraint and integer programming in OPL. INFORMS Journal on Computing, 14(4), 345–372.

    Article  MathSciNet  Google Scholar 

  33. Van Hentenryck, P., Flener, P., Pearson, J., & Ågren, M. (2003). Tractable symmetry breaking for CSPs with interchangeable values. In Proceedings of IJCAI’03 (pp. 277–282). San Francisco: Morgan Kaufmann.

    Google Scholar 

  34. Van Hentenryck, P., Flener, P., Pearson, J., & Ågren, M. (2005). Compositional derivation of symmetries for constraint satisfaction. In J.-D. Zucker & L. Saitta (Eds.), Proceedings of SARA’05, LNAI (Vol. 3607, pp. 234–247). New York: Springer.

    Google Scholar 

  35. Walsh, T. (2007). Breaking value symmetry. In C. Bessière (Ed.), Proceedings of CP’07, LNCS (Vol. 4741, pp. 880–887). New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Flener.

Additional information

The authors’ names are ordered according to the Swedish alphabet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flener, P., Pearson, J., Sellmann, M. et al. Dynamic structural symmetry breaking for constraint satisfaction problems. Constraints 14, 506–538 (2009). https://doi.org/10.1007/s10601-008-9059-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-008-9059-7

Keywords

Navigation