Abstract
In recent years, symmetry breaking for constraint satisfaction problems (CSPs) has attracted considerable attention. Various general schemes have been proposed to eliminate symmetries. In general, these schemes may take exponential space or time to eliminate all the symmetries. We identify several classes of CSPs that encompass many practical problems and for which symmetry breaking for various forms of value or variable interchangeability is tractable using dedicated search procedures. We also show the limits of efficient symmetry breaking for such dominance-detection schemes by proving intractability results for some classes of CSPs.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahuja, R., Magnati, T., & Orlin, J. (1993). Network flows. Englewood Cliffs: Prentice Hall.
Backofen, R., & Will, S. (1999). Excluding symmetries in constraint-based search. In J. Jaffar (Ed.), Proceedings of CP’99, LNCS (Vol. 1713, pp. 73–87). New York: Springer.
Barnier, N., & Brisset, P. (2002). Solving the Kirkman’s schoolgirl problem in a few seconds. In P. Van Hentenryck (Ed.), Proceedings of CP’02, LNCS (Vol. 2470. pp. 477–491). New York: Springer.
Cameron, P. (1999). Permutation groups. Number 45 in London Mathematical Society Student Texts. Cambridge: Cambridge University Press.
Cohen, D. A., Jeavons, P., Jefferson, C., Petrie, K. E., & Smith, B. M. (2005). Symmetry definitions for constraint satisfaction problems. In P. van Beek (Ed.) Proceedings of CP’05, LNCS (Vol. 3709, pp. 17–31). New York: Springer.
Colbourn, C. J., & Dinitz, J. H. (Eds.) (1996). The CRC handbook of combinatorial designs. Boca Raton: CRC.
Crawford, J. M., Ginsberg, M., Luks, E., & Roy, A. (1996). Symmetry-breaking predicates for search problems. In L. C. Aiello, J. Doyle, & S. C. Shapiro (Eds.), Proceedings of KR’96 (pp. 148–159). San Francisco: Morgan Kaufmann.
Er, M. C. (1988). A fast algorithm for generating set partitions. The Computer Journal, 31(3), 283–284.
Fahle, T., Schamberger, S., & Sellmann, M. (2001). Symmetry breaking. In T. Walsh (Ed.), Proceedings of CP’01, LNCS (Vol. 2239, pp. 93–107). New York: Springer.
Flener, P., Frisch, A. M., Hnich, B., Kızıltan, Z., Miguel, I., Pearson, J., et al. (2001). Symmetry in matrix models. In P. Flener & J. Pearson (Eds.), Proceedings of SymCon’01. http://www.it.uu.se/research/group/astra/SymCon01/.
Flener, P., Frisch, A. M., Hnich, B., Kızıltan, Z., Miguel, I., Pearson, J., et al. (2002). Breaking row and column symmetries in matrix models. In P. Van Hentenryck (Ed.), Proceedings of CP’02, LNCS (Vol. 2470, pp. 462–476). New York: Springer.
Flener, P., Pearson, J., Sellmann, M., & Van Hentenryck, P. (2006). Static and dynamic structural symmetry breaking. In F. Benhamou (Ed.), Proceedings of CP’06, LNCS (Vol. 4204, pp. 695–699). New York: Springer.
Flener, P., Pearson, J., & Sellmann, M. (2008). Static and dynamic structural symmetry breaking. Technical Report 2008-023, Department of Information Technology, Uppsala University, Sweden, September. http://www.it.uu.se/research/reports/2008-023/.
Flener, P., Pearson, J., Sellmann, M., & Ågren, M. (2007). Structural symmetry breaking for constraint satisfaction problems. Technical Report 2007-032, Department of Information Technology, Uppsala University, Sweden, November. http://www.it.uu.se/research/reports/2007-032/.
Focacci, F., & Milano, M. (2001). Global cut framework for removing symmetries. In T. Walsh (Ed.), Proceedings of CP’01, LNCS (Vol. 2239, pp. 77–92). New York: Springer.
Freuder, E. C. (1991). Eliminating interchangeable values in constraint satisfaction problems. In Proceedings of AAAI’91 (pp. 227–233). Menlo Park: AAAI.
Gent, I. P., & Smith, B. M. (2000). Symmetry breaking during search in constraint programming. In Proceedings of ECAI’00 (pp. 599–603). Amsterdam: IOS.
Heller, D. S., & Sellmann, M. (2006). Dynamic symmetry breaking restarted. In F. Benhamou (Ed.), Proceedings of CP’06, LNCS (Vol. 4204, pp. 721–725). New York: Springer.
Kubale, M., & Jackowski, B. (1985). A generalized implicit enumeration algorithm for graph coloring. CACM, 28(4), 412–418.
Law, Y., & Lee, J. (2006). Symmetry breaking constraints for value symmetries in constraint satisfaction. Constraints, 11(2–3), 221–267.
Law, Y., Lee, J., Walsh, T., & Yip, J. (2007). Breaking symmetry of interchangeable variables and values. In C. Bessière (Ed.), Proceedings of CP’07, LNCS (Vol. 4741, pp. 423–437). New York: Springer.
Meseguer, P., & Torras, C. (2001). Exploiting symmetries within constraint satisfaction search. Artificial Intelligence, 129(1–2), 133–163.
Puget, J.-F. (1993). On the satisfiability of symmetrical constrained satisfaction problems. In J. Komorowski & Z. Raś (Ed.), Proceedings of ISMIS’93, LNAI (Vol. 689, pp. 350–361). New York: Springer.
Puget, J.-F. (2002). Symmetry breaking revisited. In P. Van Hentenryck (Ed.), Proceedings of CP’02, LNCS (Vol. 2470, pp. 446–461). New York: Springer.
Puget, J.-F. (2006). An efficient way of breaking value symmetries. In Proceedings of AAAI’06. Menlo Park: AAAI.
Roney-Dougal, C. M., Gent, I. P., Kelsey, T., & Linton, S. (2004). Tractable symmetry breaking using restricted search trees. In R. L. de Mántaras & L. Saitta (Eds.), Proceedings of ECAI’04 (pp. 211–215). Amsterdam: IOS.
Sellmann, M., & Van Hentenryck, P. (2005). Structural symmetry breaking. In Proceedings of IJCAI’05 (pp. 298–303). IJCAI.
Sellmann, M., Gellermann, T., & Wright, R. (2007). Cost-based filtering for shorter path constraints. Constraints, 12(2), 207–238.
Shlyakhter, I. (2001). Generating effective symmetry-breaking predicates for search problems. Electronic Notes in Discrete Mathematics (Vol. 9). Proceedings of SAT’01.
Smith, B. M. (2001). Reducing symmetry in a combinatorial design problem. In C. Gervet & M. Wallace (Eds.), Proceedings of CP-AI-OR’01.
Smith, B. M., Brailsford, S. C., Hubbard, P. M., & Williams, H. P. (1996). The progressive party problem: Integer linear programming and constraint programming compared. Constraints, 1, 119–138.
Van Hentenryck, P. (2002). Constraint and integer programming in OPL. INFORMS Journal on Computing, 14(4), 345–372.
Van Hentenryck, P., Flener, P., Pearson, J., & Ågren, M. (2003). Tractable symmetry breaking for CSPs with interchangeable values. In Proceedings of IJCAI’03 (pp. 277–282). San Francisco: Morgan Kaufmann.
Van Hentenryck, P., Flener, P., Pearson, J., & Ågren, M. (2005). Compositional derivation of symmetries for constraint satisfaction. In J.-D. Zucker & L. Saitta (Eds.), Proceedings of SARA’05, LNAI (Vol. 3607, pp. 234–247). New York: Springer.
Walsh, T. (2007). Breaking value symmetry. In C. Bessière (Ed.), Proceedings of CP’07, LNCS (Vol. 4741, pp. 880–887). New York: Springer.
Author information
Authors and Affiliations
Corresponding author
Additional information
The authors’ names are ordered according to the Swedish alphabet.
Rights and permissions
About this article
Cite this article
Flener, P., Pearson, J., Sellmann, M. et al. Dynamic structural symmetry breaking for constraint satisfaction problems. Constraints 14, 506–538 (2009). https://doi.org/10.1007/s10601-008-9059-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10601-008-9059-7