[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Block coordinate descent for smooth nonconvex constrained minimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

At each iteration of a block coordinate descent method one minimizes an approximation of the objective function with respect to a generally small set of variables subject to constraints in which these variables are involved. The unconstrained case and the case in which the constraints are simple were analyzed in the recent literature. In this paper we address the problem in which block constraints are not simple and, moreover, the case in which they are not defined by global sets of equations and inequations. A general algorithm that minimizes quadratic models with quadratic regularization over blocks of variables is defined and convergence and complexity are proved. In particular, given tolerances \(\delta >0\) and \(\varepsilon >0\) for feasibility/complementarity and optimality, respectively, it is shown that a measure of \((\delta ,0)\)-criticality tends to zero; and the number of iterations and functional evaluations required to achieve \((\delta ,\varepsilon )\)-criticality is \(O(\varepsilon ^{-2})\). Numerical experiments in which the proposed method is used to solve a continuous version of the traveling salesman problem are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that all data generated or analyzed in the development of this work are adequately included or referenced in the article itself.

Notes

  1. We already shown, in Sect. 2, that, although non-regular, if a smooth function \(\psi\) has a minimizer at \(C_{1,4}\), its gradient \(\nabla \psi (C_{1,4})\) is necessarily null; so that \(C_{1,4}\) is a KKT point of the minimization of \(\psi\) subject to \(\varphi \le 0\).

References

  1. Aarts, E., Lenstra, J. K., (eds.): Local search in combinatorial optimization, Princeton University Press, (2003)

  2. Amaral, V.A., Andreani, R., Birgin, E.G., Marcondes, D.S., Martínez, J.M.: On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization. J. Glob. Optim. https://doi.org/10.1007/s10898-022-0.1168-6 (to appear)

  3. Applegate, D. L., Bixby, R. E., Chvátal, V., Cook, W. J.: The traveling salesman problem: a computational study, Princeton University Press, (2006)

  4. Birgin, E.G., Gardenghi, J.L., Martínez, J.M., Santos, S.A., Toint, Ph.L.: Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models. Mathematical Programming 163, 359–368 (2017)

    Article  MathSciNet  Google Scholar 

  5. Birgin, E.G., Martínez, J.M.: On regularization and active-set methods with complexity for constrained optimization. SIAM Journal on Optimization 28, 1367–1395 (2018)

    Article  MathSciNet  Google Scholar 

  6. Birgin, E.G., Martínez, J.M.: A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. Computational Optimization and Applications 73, 707–753 (2019)

    Article  MathSciNet  Google Scholar 

  7. Bonettini, S., Prato, M., Begegoldi, S.: A cyclic block coordinate descent method with generalized gradient projections. Applied Mathematics and Computation 286, 288–300 (2016)

    Article  MathSciNet  Google Scholar 

  8. Gendreau, M., Hertz, A., Laporte, G.: New insertion and post optimization procedures for the traveling salesman problem. Operations Research 40, 1086–1094 (1992)

    Article  MathSciNet  Google Scholar 

  9. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York, NY (2006)

    MATH  Google Scholar 

  10. Powell, M.J.D.: On search directions for minimization algorithms. Mathematical Programming 4, 193–201 (1973)

    Article  MathSciNet  Google Scholar 

  11. Wright, S.J.: Coordinate descent methods. Mathematical Programming 151, 3–34 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by FAPESP (Grants 2013/07375-0, 2016/01860-1, and 2018/24293-0) and CNPq (Grants 302538/2019-4 and 302682/2019-8)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Birgin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birgin, E.G., Martínez, J.M. Block coordinate descent for smooth nonconvex constrained minimization. Comput Optim Appl 83, 1–27 (2022). https://doi.org/10.1007/s10589-022-00389-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-022-00389-5

Keywords

AMS Subject Classifications:

Navigation