Abstract
The optimization of shape functionals under convexity, diameter or constant width constraints shows numerical challenges. The support function can be used in order to approximate solutions to such problems by finite dimensional optimization problems under various constraints. We propose a numerical framework in dimensions two and three and we present applications from the field of convex geometry. We consider the optimization of functionals depending on the volume, perimeter and Dirichlet Laplace eigenvalues under the aforementioned constraints. In particular we confirm numerically Meissner’s conjecture, regarding three dimensional bodies of constant width with minimal volume.
Similar content being viewed by others
Availability of data and materials
The data that support the findings of this paper are available from the corresponding author upon request.
Change history
02 April 2022
A Correction to this paper has been published: https://doi.org/10.1007/s10589-022-00367-x
References
Lamboley, J., Novruzi, A.: Polygons as optimal shapes with convexity constraint. SIAM J. Control Optim. 48(5), 3003–3025 (2009/10)
Lamboley, J., Novruzi, A., Pierre, M.: Regularity and singularities of optimal convex shapes in the plane. Arch. Ration. Mech. Anal. 205(1), 311–343 (2012)
Lachand-Robert, T., Oudet, E.: Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16(2), 368–379 (2005)
Mérigot, Q., Oudet, E.: Handling convexity-like constraints in variational problems. SIAM J. Numer. Anal. 52(5), 2466–2487 (2014)
Bayen, T., Lachand-Robert, T., Oudet, E.: Analytic parametrization of three-dimensional bodies of constant width. Arch. Ration. Mech. Anal. 186(2), 225–249 (2007)
Lachand-Robert, T., Oudet, É.: Bodies of constant width in arbitrary dimension. Math. Nachr. 280(7), 740–750 (2007)
Oudet, E.: Shape optimization under width constraint. Discrete Comput. Geom. 49(2), 411–428 (2013)
Bartels, S., Wachsmuth, G.: Numerical approximation of optimal convex shapes. SIAM J. Sci. Comput. 42(2), 1226–1244 (2020)
Bayen, T., Henrion, D.: Semidefinite programming for optimizing convex bodies under width constraints. Optim. Methods Softw. 27(6), 1073–1099 (2012)
Antunes, P.R.S.: Maximal and minimal norm of Laplacian eigenfunctions in a given subdomain. Inverse Prob. 32(11), 115003–18 (2016)
Antunes, P.R.S., Henrot, A.: On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2130), 1577–1603 (2011)
Oudet, É.: Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM Control Optim. Calc. Var. 10(3), 315–330 (2004)
Schneider, R.: Convex Bodies: the Brunn–Minkowski Theory. Cambridge University Press, Cambridge (2014)
Anciaux, H., Guilfoyle, B.: On the three-dimensional Blaschke–Lebesgue problem. Proc. Am. Math. Soc. 139(5), 1831–1839 (2011)
Šír, Z., Gravesen, J., Jüttler, B.: Curves and surfaces represented by polynomial support functions. Theoret. Comput. Sci. 392(1–3), 141–157 (2008)
Valentine, F.A.: Convex Sets. McGraw-Hill Book Co., New York (1964)
Toponogov, V.A.: Differential Geometry of Curves and Surfaces. Birkhäuser Boston Inc., Boston (2006)
Henrot, A., Pierre, M.: Shape Variation and Optimization. European Mathematical Society (EMS), Zürich (2018)
Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)
Bucur, D., Buttazzo, G.: Variational Methods in Shape Optimization Problems. Birkhäuser Boston Inc., Boston (2005)
Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag, Basel (2006)
Goldberg, M.: Rotors in polygons and polyhedra. Math. Comput. 14, 229–239 (1960)
Meissner, E.: Über die anwendung von Fourier-reihen auf einige aufgaben der geometrie und kinematik. Vierteljahrschr. Naturforschenden Ges. 54, 309–329 (1909)
Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press, Cambridge (1996)
Kawohl, B., Lachand-Robert, T.: Characterization of Cheeger sets for convex subsets of the plane. Pac. J. Math. 225(1), 103–118 (2006)
Carlier, G., Comte, M., Peyré, G.: Approximation of maximal Cheeger sets by projection. M2AN Math. Model. Numer. Anal. 43(1), 139–150 (2009)
Caselles, V., Facciolo, G., Meinhardt, E.: Anisotropic Cheeger sets and applications. SIAM J. Imaging Sci. 2(4), 1211–1254 (2009)
Bogosel, B., Bucur, D., Fragalà, I.: Phase field approach to optimal packing problems and related Cheeger clusters. Appl. Math. Optim. 81(1), 63–87 (2020)
Antunes, P.R.S., Freitas, P.: Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154(1), 235–257 (2012)
Osting, B.: Optimization of spectral functions of Dirichlet–Laplacian eigenvalues. J. Comput. Phys. 229(22), 8578–8590 (2010)
Antunes, P.R.S., Freitas, P.: Optimisation of eigenvalues of the Dirichlet Laplacian with a surface area restriction. Appl. Math. Optim. 73(2), 313–328 (2016)
Antunes, P.R.S.: Numerical calculation of eigensolutions of 3D shapes using the method of fundamental solutions. Numer. Methods Part. Differ. Equ. 27(6), 1525–1550 (2011)
Karageorghis, A.: The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation. Appl. Math. Lett. 14(7), 837–842 (2001)
Alves, C.J.S., Antunes, P.R.S.: The method of fundamental solutions applied to some inverse eigenproblems. SIAM J. Sci. Comput. 35(3), 1689–1708 (2013)
Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227(14), 7003–7026 (2008)
Betcke, T., Trefethen, L.N.: Reviving the method of particular solutions. SIAM Rev. 47(3), 469–491 (2005)
Hiptmair, R., Paganini, A., Sargheini, S.: Comparison of approximate shape gradients. BIT 55(2), 459–485 (2015)
Zhu, S.: Effective shape optimization of Laplace eigenvalue problems using domain expressions of Eulerian derivatives. J. Optim. Theory Appl. 176(1), 17–34 (2018)
Zhu, S., Hu, X., Liao, Q.: Convergence analysis of Galerkin finite element approximations to shape gradients in eigenvalue optimization. BIT 60(3), 853–878 (2020)
Bucur, D.: Minimization of the \(k\)-th eigenvalue of the Dirichlet Laplacian. Arch. Ration. Mech. Anal. 206(3), 1073–1083 (2012)
Mazzoleni, D., Pratelli, A.: Existence of minimizers for spectral problems. J. Math. Pures Appl. (9) 100(3), 433–453 (2013)
De Philippis, G., Velichkov, B.: Existence and regularity of minimizers for some spectral functionals with perimeter constraint. Appl. Math. Optim. 69(2), 199–231 (2014)
Bogosel, B., Henrot, A., Lucardesi, I.: Minimization of the eigenvalues of the Dirichlet–Laplacian with a diameter constraint. SIAM J. Math. Anal. 50(5), 5337–5361 (2018)
Henrot, A., Oudet, E.: Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions. Arch. Ration. Mech. Anal. 169(1), 73–87 (2003)
Kawohl, B., Weber, C.: Meissner’s mysterious bodies. Math. Intell. 33(3), 94–101 (2011)
Müller, M.: Konvexe Körper Konstanter Breite unter Besonderer Berücksichtigung des Meissner-Tetraeders. Diplomarbeit, Universität zu Köln (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original online version of this article was revised: the another affiliation of Pedro R. S. Antunes is included in the article.
Rights and permissions
About this article
Cite this article
Antunes, P.R.S., Bogosel, B. Parametric shape optimization using the support function. Comput Optim Appl 82, 107–138 (2022). https://doi.org/10.1007/s10589-022-00360-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-022-00360-4