Abstract
We consider vector equilibrium problems in real Banach spaces and study their regularized problems. Based on cone continuity and generalized convexity properties of vector-valued mappings, we propose general conditions that guarantee existence of solutions to such problems in cases of monotonicity and nonmonotonicity. First, our study indicates that every Tikhonov trajectory converges to a solution to the original problem. Then, we establish the equivalence between the problem solvability and the boundedness of any Tikhonov trajectory. Finally, the convergence of the Tikhonov trajectory to the least-norm solution of the original problem is discussed.
Similar content being viewed by others
References
Alleche, B., Rădulescu, V.D., Sebaoui, M.: The Tikhonov regularization for equilibrium problems and applications to quasi-hemivariational inequalities. Optim. Lett. 9(3), 483–503 (2015)
Anh, L.Q., Khanh, P.Q.: Uniqueness and Hölder continuity of the solution to multivalued equilibrium problems in metric spaces. J. Glob. Optim. 37(3), 449–465 (2007)
Ansari, Q.H., Köbis, E., Yao, J.C.: Vector Variational Inequalities and Vector Optimization. Springer, Berlin (2018)
Ansari, Q.H., Oettli, W., Schläger, D.: A generalization of vectorial equilibria. Math. Methods Oper. Res. 46(2), 147–152 (1997)
Bianchi, M., Hadjisavvas, N., Schaible, S.: Vector equilibrium problems with generalized monotone bifunctions. J. Optim. Theory Appl. 92(3), 527–542 (1997)
Bigi, G., Castellani, M., Pappalardo, M., Passacantando, M.: Nonlinear Programming Techniques for Equilibria. Springer, Cham (2019)
Billups, S.C., Ferris, M.C.: QPCOMP: a quadratic programming based solver for mixed complementarity problems. Math. Program. 76(3), 533–562 (1997)
Bogdan, M., Kolumbán, J.: Some regularities for parametric equilibrium problems. J. Glob. Optim. 44(4), 481–492 (2009)
Browder, F.E.: Existence and approximation of solutions of nonlinear variational inequalities. Proc. Natl. Acad. Sci. USA 56(4), 1080–1086 (1966)
Chadli, O., Ansari, Q.H., Al-Homidan, S.: Existence of solutions and algorithms for bilevel vector equilibrium problems: an auxiliary principle technique. J. Optim. Theory Appl. 172(3), 726–758 (2017)
Chadli, O., Chbani, Z., Riahi, H.: Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities. J. Optim. Theory Appl. 105(2), 299–323 (2000)
Charitha, C., Dutta, J., Luke, D.R.: Lagrange multipliers, (exact) regularization and error bounds for monotone variational inequalities. Math. Program. 161(1–2), 519–549 (2017)
Deng, Y., Mehlitz, P., Prüfert, U.: Optimal control in first-order Sobolev spaces with inequality constraints. Comput. Optim. Appl. 72(3), 797–826 (2019)
Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Springer, Berlin (1996)
Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I and II. Springer, New York (2003)
Friedlander, M.P., Tseng, P.: Exact regularization of convex programs. SIAM J. Optim. 18(4), 1326–1350 (2007)
Gaydu, M.: Stability properties of the Tikhonov regularization for nonmonotone inclusions. J. Glob. Optim. 52(4), 843–853 (2012)
Giannessi, F.: Theorems of alternative, quadratic programs and complementarity problems. In: Cottle, R.W., Gianneesi, F., Lions, J.L. (eds.) Variational Inequalities and Complementarity Problems, pp. 151–186. Wiley, New York (1980)
Gutiérrez, C., Kassay, G., Novo, V., Ródenas-Pedregosa, J.: Ekeland variational principles in vector equilibrium problems. SIAM J. Optim. 27(4), 2405–2425 (2017)
Gwinner, J.: On the regularization of monotone variational inequalities. Oper. Res. Verfahren. 28, 374–386 (1978)
Hieu, D.V.: New subgradient extragradient methods for common solutions to equilibrium problems. Comput. Optim. Appl. 67(3), 571–594 (2017)
Hung, P.G., Muu, L.D.: The Tikhonov regularization extended to equilibrium problems involving pseudomonotone bifunctions. Nonlinear Anal. 74(17), 6121–6129 (2011)
Iusem, A.N., Kassay, G., Sosa, W.: On certain conditions for the existence of solutions of equilibrium problems. Math. Program. 116(1–2), 259–273 (2009)
Jahn, J.: Vector Optimization. Springer, Berlin (2009)
Kassay, G., Miholca, M.: Existence results for vector equilibrium problems given by a sum of two functions. J. Glob. Optim. 63(1), 195–211 (2015)
Kassy, G., Rădulescu, V.D.: Equilibrium Problems and Applications. Academic Press, London (2019)
Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities, vol. 495. Springer, Berlin (2001)
Konnov, I.V.: Combined relaxation method for solving vector equilibrium problems. Russ. Math. (Iz. VUZ) 39(12), 51–59 (1995)
Konnov, I.V.: On the convergence of a regularization method for variational inequalities. Comput. Math. Math. Phys. 46(4), 541–547 (2006)
Konnov, I.V.: Regularization method for nonmonotone equilibrium problems. J. Nonlinear Convex Anal. 10, 93–101 (2009)
Konnov, I.V.: On penalty methods for non monotone equilibrium problems. J. Glob. Optim. 59(1), 131–138 (2014)
Konnov, I.V.: Regularized penalty method for general equilibrium problems in Banach spaces. J. Optim. Theory Appl. 164(2), 500–513 (2015)
Konnov, I.V.: Equilibrium formulations of relative optimization problems. Math. Methods Oper. Res. 90(1), 137–152 (2019)
Konnov, I.V., Dyabilkin, D.A.: Nonmonotone equilibrium problems: coercivity conditions and weak regularization. J. Glob. Optim. 49(4), 575–587 (2011)
Lalitha, C.S., Mehta, M.: Vector variational inequalities with cone-pseudomonotone bifunctions. Optimization 54(3), 327–338 (2005)
László, S.: Vector equilibrium problems on dense sets. J. Optim. Theory Appl. 170(2), 437–457 (2016)
Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989)
Luu, D.V.: Optimality condition for local efficient solutions of vector equilibrium problems via convexificators and applications. J. Optim. Theory Appl. 171(2), 643–665 (2016)
Mangasarian, O.L.: The ill-posed linear complementarity problem. In: Ferris, M.C., Pang, J.S. (eds.) Complementarity and Variational Problems: State of the Art, pp. 226–233. SIAM Publications, Philadelphia (1997)
Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18(12), 1159–1166 (1992)
Oliveira, P.R., Santos, P.S.M., Silva, A.N.: A Tikhonov-type regularization for equilibrium problems in Hilbert spaces. J. Math. Anal. Appl. 401(1), 336–342 (2013)
Ravindran, G., Gowda, M.S.: Regularization of p0-functions in box variational inequality problems. SIAM J. Optim. 11(3), 748–760 (2001)
Reddy, G.: A class of parameter choice rules for stationary iterated weighted Tikhonov regularization scheme. Appl. Math. Comput. 347, 464–476 (2019)
Rudin, W.: Functional Analysis. McGraw-Hill. Inc, New York (1991)
Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer, Berlin (2009)
Tanaka, T.: Generalized semicontinuity and existence theorems for cone saddle points. Appl. Math. Optim. 36(3), 313–322 (1997)
Tikhonov, A.N.: On the solution of ill-posed problems and regularization method. Dokl. Akad. Nauk SSSR 152, 501–504 (1963)
Von Daniels, N.: Tikhonov regularization of control-constrained optimal control problems. Comput. Optim. Appl. 70(1), 295–320 (2018)
Yousefian, F., Nedić, A., Shanbhag, U.V.: On smoothing, regularization, and averaging in stochastic approximation methods for stochastic variational inequality problems. Math. Program. 165(1), 391–431 (2017)
Zeidler, E.: Nonlinear Functional Analysis and Its Applications: Fixed-Point Theorems. Springer, New York (1986)
Acknowledgements
The authors are very grateful to the Editors and anonymous Referees for their helpful remarks and suggestions that helped us significantly improve the presentation of the paper. The research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 101.01-2020.11
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Anh, L.Q., Duy, T.Q., Muu, L.D. et al. The Tikhonov regularization for vector equilibrium problems. Comput Optim Appl 78, 769–792 (2021). https://doi.org/10.1007/s10589-020-00258-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-020-00258-z
Keywords
- Tikhonov regularization
- Vector equilibrium problem
- Tikhonov trajectory
- Least-norm solution
- Generalized Archimedean axiom