[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The Tikhonov regularization for vector equilibrium problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider vector equilibrium problems in real Banach spaces and study their regularized problems. Based on cone continuity and generalized convexity properties of vector-valued mappings, we propose general conditions that guarantee existence of solutions to such problems in cases of monotonicity and nonmonotonicity. First, our study indicates that every Tikhonov trajectory converges to a solution to the original problem. Then, we establish the equivalence between the problem solvability and the boundedness of any Tikhonov trajectory. Finally, the convergence of the Tikhonov trajectory to the least-norm solution of the original problem is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alleche, B., Rădulescu, V.D., Sebaoui, M.: The Tikhonov regularization for equilibrium problems and applications to quasi-hemivariational inequalities. Optim. Lett. 9(3), 483–503 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anh, L.Q., Khanh, P.Q.: Uniqueness and Hölder continuity of the solution to multivalued equilibrium problems in metric spaces. J. Glob. Optim. 37(3), 449–465 (2007)

    Article  MATH  Google Scholar 

  3. Ansari, Q.H., Köbis, E., Yao, J.C.: Vector Variational Inequalities and Vector Optimization. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  4. Ansari, Q.H., Oettli, W., Schläger, D.: A generalization of vectorial equilibria. Math. Methods Oper. Res. 46(2), 147–152 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bianchi, M., Hadjisavvas, N., Schaible, S.: Vector equilibrium problems with generalized monotone bifunctions. J. Optim. Theory Appl. 92(3), 527–542 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bigi, G., Castellani, M., Pappalardo, M., Passacantando, M.: Nonlinear Programming Techniques for Equilibria. Springer, Cham (2019)

    Book  MATH  Google Scholar 

  7. Billups, S.C., Ferris, M.C.: QPCOMP: a quadratic programming based solver for mixed complementarity problems. Math. Program. 76(3), 533–562 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogdan, M., Kolumbán, J.: Some regularities for parametric equilibrium problems. J. Glob. Optim. 44(4), 481–492 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Browder, F.E.: Existence and approximation of solutions of nonlinear variational inequalities. Proc. Natl. Acad. Sci. USA 56(4), 1080–1086 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chadli, O., Ansari, Q.H., Al-Homidan, S.: Existence of solutions and algorithms for bilevel vector equilibrium problems: an auxiliary principle technique. J. Optim. Theory Appl. 172(3), 726–758 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chadli, O., Chbani, Z., Riahi, H.: Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities. J. Optim. Theory Appl. 105(2), 299–323 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Charitha, C., Dutta, J., Luke, D.R.: Lagrange multipliers, (exact) regularization and error bounds for monotone variational inequalities. Math. Program. 161(1–2), 519–549 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deng, Y., Mehlitz, P., Prüfert, U.: Optimal control in first-order Sobolev spaces with inequality constraints. Comput. Optim. Appl. 72(3), 797–826 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  15. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I and II. Springer, New York (2003)

    MATH  Google Scholar 

  16. Friedlander, M.P., Tseng, P.: Exact regularization of convex programs. SIAM J. Optim. 18(4), 1326–1350 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gaydu, M.: Stability properties of the Tikhonov regularization for nonmonotone inclusions. J. Glob. Optim. 52(4), 843–853 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Giannessi, F.: Theorems of alternative, quadratic programs and complementarity problems. In: Cottle, R.W., Gianneesi, F., Lions, J.L. (eds.) Variational Inequalities and Complementarity Problems, pp. 151–186. Wiley, New York (1980)

    Google Scholar 

  19. Gutiérrez, C., Kassay, G., Novo, V., Ródenas-Pedregosa, J.: Ekeland variational principles in vector equilibrium problems. SIAM J. Optim. 27(4), 2405–2425 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gwinner, J.: On the regularization of monotone variational inequalities. Oper. Res. Verfahren. 28, 374–386 (1978)

    MathSciNet  MATH  Google Scholar 

  21. Hieu, D.V.: New subgradient extragradient methods for common solutions to equilibrium problems. Comput. Optim. Appl. 67(3), 571–594 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hung, P.G., Muu, L.D.: The Tikhonov regularization extended to equilibrium problems involving pseudomonotone bifunctions. Nonlinear Anal. 74(17), 6121–6129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Iusem, A.N., Kassay, G., Sosa, W.: On certain conditions for the existence of solutions of equilibrium problems. Math. Program. 116(1–2), 259–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jahn, J.: Vector Optimization. Springer, Berlin (2009)

    MATH  Google Scholar 

  25. Kassay, G., Miholca, M.: Existence results for vector equilibrium problems given by a sum of two functions. J. Glob. Optim. 63(1), 195–211 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kassy, G., Rădulescu, V.D.: Equilibrium Problems and Applications. Academic Press, London (2019)

    Google Scholar 

  27. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities, vol. 495. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  28. Konnov, I.V.: Combined relaxation method for solving vector equilibrium problems. Russ. Math. (Iz. VUZ) 39(12), 51–59 (1995)

    MATH  Google Scholar 

  29. Konnov, I.V.: On the convergence of a regularization method for variational inequalities. Comput. Math. Math. Phys. 46(4), 541–547 (2006)

    Article  MathSciNet  Google Scholar 

  30. Konnov, I.V.: Regularization method for nonmonotone equilibrium problems. J. Nonlinear Convex Anal. 10, 93–101 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Konnov, I.V.: On penalty methods for non monotone equilibrium problems. J. Glob. Optim. 59(1), 131–138 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Konnov, I.V.: Regularized penalty method for general equilibrium problems in Banach spaces. J. Optim. Theory Appl. 164(2), 500–513 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Konnov, I.V.: Equilibrium formulations of relative optimization problems. Math. Methods Oper. Res. 90(1), 137–152 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Konnov, I.V., Dyabilkin, D.A.: Nonmonotone equilibrium problems: coercivity conditions and weak regularization. J. Glob. Optim. 49(4), 575–587 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lalitha, C.S., Mehta, M.: Vector variational inequalities with cone-pseudomonotone bifunctions. Optimization 54(3), 327–338 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. László, S.: Vector equilibrium problems on dense sets. J. Optim. Theory Appl. 170(2), 437–457 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989)

    Google Scholar 

  38. Luu, D.V.: Optimality condition for local efficient solutions of vector equilibrium problems via convexificators and applications. J. Optim. Theory Appl. 171(2), 643–665 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mangasarian, O.L.: The ill-posed linear complementarity problem. In: Ferris, M.C., Pang, J.S. (eds.) Complementarity and Variational Problems: State of the Art, pp. 226–233. SIAM Publications, Philadelphia (1997)

    Google Scholar 

  40. Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18(12), 1159–1166 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Oliveira, P.R., Santos, P.S.M., Silva, A.N.: A Tikhonov-type regularization for equilibrium problems in Hilbert spaces. J. Math. Anal. Appl. 401(1), 336–342 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ravindran, G., Gowda, M.S.: Regularization of p0-functions in box variational inequality problems. SIAM J. Optim. 11(3), 748–760 (2001)

    Article  MATH  Google Scholar 

  43. Reddy, G.: A class of parameter choice rules for stationary iterated weighted Tikhonov regularization scheme. Appl. Math. Comput. 347, 464–476 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Rudin, W.: Functional Analysis. McGraw-Hill. Inc, New York (1991)

    MATH  Google Scholar 

  45. Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer, Berlin (2009)

    MATH  Google Scholar 

  46. Tanaka, T.: Generalized semicontinuity and existence theorems for cone saddle points. Appl. Math. Optim. 36(3), 313–322 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tikhonov, A.N.: On the solution of ill-posed problems and regularization method. Dokl. Akad. Nauk SSSR 152, 501–504 (1963)

    Google Scholar 

  48. Von Daniels, N.: Tikhonov regularization of control-constrained optimal control problems. Comput. Optim. Appl. 70(1), 295–320 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yousefian, F., Nedić, A., Shanbhag, U.V.: On smoothing, regularization, and averaging in stochastic approximation methods for stochastic variational inequality problems. Math. Program. 165(1), 391–431 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zeidler, E.: Nonlinear Functional Analysis and Its Applications: Fixed-Point Theorems. Springer, New York (1986)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Editors and anonymous Referees for their helpful remarks and suggestions that helped us significantly improve the presentation of the paper. The research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 101.01-2020.11

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Quoc Duy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh, L.Q., Duy, T.Q., Muu, L.D. et al. The Tikhonov regularization for vector equilibrium problems. Comput Optim Appl 78, 769–792 (2021). https://doi.org/10.1007/s10589-020-00258-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00258-z

Keywords

Mathematics Subject Classification

Navigation