Abstract
In this work, we consider the problem of portfolio optimization under cardinality and quantity constraints. We use the standard model of mean-variance in its bi-objective form which is presented here as a bi-objective quadratic programming problem under cardinality and quantity constraints. This problem is NP-hard, which is why the majority of methods proposed in the literature use metaheuristics for its resolution. In this paper, we propose an iterative method for solving constrained portfolio optimization problems. Experiments are performed with major market indices, such as the Hang Seng, DAX, FTSE, S&P 100, Nikkei, S&P 500 and Nasdaq using real-world datasets involving up to 2196 assets. Comparisons with two exact methods and a metaheuristic are performed. These results show that the new method allows to find efficient portfolio fronts in reasonable time.
Similar content being viewed by others
References
Agarwal, S.: Portfolio selection theories: review, synthesis and critique. Asian J. Manag. 5(1), 1–7 (2014)
Altun, E., Tatlidil, H.: A Comparison of Portfolio Selection Models via Application on ISE 100 Index Data, vol. 1558, pp. 1438–1441 (2013)
Anagnostopoulos, K.P., Mamanis, G.: A portfolio optimization model with three objectives and discrete variables. Comput. Oper. Res. 37(7), 1285–1297 (2010)
Beasley, J.E.: OR-Library: distributing test problems by electronic mail. J. Oper. Res. 41(11), 1069–1072 (1990)
Bertsimas, D., Shioda, R.: Algorithm for cardinality-constrained quadratic optimization. Comput. Optim. Appl. 43(1), 1–22 (2009)
Beyhaghi, M., Hawley, J.P.: Modern portfolio theory and risk management: assumptions and unintended consequences. J. Sustain. Finance Invest. 3(1), 17–37 (2013)
Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Program. 74(2), 121–140 (1996)
Borchers, B., Mitchell, J.E.: An improved branch and bound algorithm for mixed integer nonlinear programs. Comput. Oper. Res. 21(4), 359–367 (1994)
Cesarone, Francesco: http://w3.uniroma1.it/tardella/datasets.html. Accessed date 12 Jan 2017
Cesarone, F., Scozzari, A., Tardella, F.: Linear vs. quadratic portfolio selection models with hard real-world constraints. Comput. Manag. Sci. 1–26 (May 2014)
Chang, T.J., Meade, N., Beasley, J.E., Sharaiha, Y.M.: Heuristics for cardinality constrained portfolio optimisation. Comput. Oper. Res. 27(13), 1271–1302 (2000)
Chankong, V., Haimes, Y.Y.: Optimization-based methods for multiobjective decision-making—an overview. Large Scale Syst. Inf. Decis. Technol. 5(1), 1–33 (1983)
Cura, T.: Particle swarm optimization approach to portfolio optimization. Nonlinear analysis: real world applications 10(4), 2396–2406 (2009)
Dai, Y.-H., Yuan, Y.-X.: Alternate minimization gradient method. IMA J. Numer. Anal. 23(3), 377–393 (2003)
de Almeida, A.T., Vetschera, R.: A note on scale transformations in the PROMETHEE V method. Eur. J. Oper. Res. 219(1), 198–200 (2012)
Deng, G.-F., Lin, W.-T., Lo, C.-C.: Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. Expert Syst. Appl. 39(4), 4558–4566 (2012)
Di Gaspero, L., Di Tollo, G., Roli, A., Schaerf, A.: Hybrid metaheuristics for constrained portfolio selection problems. Quant. Finance 11(10), 1473–1487 (2011)
Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization, vol. 436. Springer, Berlin (2008)
Elton, E.J., Gruber, M.J., Brown, S.J., Goetzmann, W.N.: Modern Portfolio Theory and Investment Analysis. Wiley, New York (2009)
Fieldsend, J.E., Matatko, J., Peng, M.: Cardinality constrained portfolio optimisation. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) Intelligent Data Engineering and Automated Learning IDEAL 2004, vol. 3177, pp. 788–793. Springer Berlin Heidelberg, Berlin (2004)
Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math. Program. 106(2), 225–236 (2006)
Fusai, G., Roncoroni, A.: Implementing Models in Quantitative Finance: Methods and Cases. Springer, New York (2007)
Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22(3), 618–630 (1968)
Gulpinar, N., An, L.T.H., Moeini, M.: Robust investment strategies with discrete asset choice constraints using DC programming. Optimization 59(1), 45–62 (2010)
Haimes, Y.Y.: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1(3), 296–297 (1971)
Haqiqi, K.F., Kazemi, T.: Ant colony optimization approach to portfolio optimization. In: Proceedings of the 3rd International Conference on Financial Theory and Engineering, pp. 292–296 (2012)
Jobst, N.J., Horniman, M.D., Lucas, C.A., Mitra, G.: Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints. Quant. Finance 1(5), 489–501 (2001)
Lee, E.K., Mitchell, J.E.: Computational experience of an interior-point SQP algorithm in a parallel branch-and-bound framework. Proc. High Perform. Optim. Tech. 1997, 97–108 (1997)
Li, B., Hoi, S.C.H.: Online portfolio selection: a survey. ACM Comput. Surv. (CSUR) 46(3), 35 (2014)
Li, D., Sun, X., Wang, J.: Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection. Math. Finance 16(1), 83–101 (2006)
Li, J., Xu, J.: Multi-objective portfolio selection model with fuzzy random returns and a compromise approach-based genetic algorithm. Inf. Sci. 220 (January 2013)
Lwin, K., Rong, Q.: A hybrid algorithm for constrained portfolio selection problems. Appl. Intell. 39(2), 251–266 (2013)
Lwin, K., Rong, Q., Kendall, G.: A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization. Appl. Soft Comput. 24, 757–772 (2014)
Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)
Mavrotas, G., Pechak, O.: Combining mathematical programming and Monte Carlo simulation to deal with uncertainty in energy project portfolio selection. In: Cavallaro, F. (ed.) Assessment and Simulation Tools for Sustainable Energy Systems, Number 129 in Green Energy and Technology, pp. 333–356. Springer, London (2013)
Miettinen, K.: Nonlinear multiobjective optimization, volume 12 of international series in operations research and management science (1999)
Moral-Escudero, R., Ruiz-Torrubiano, R., Suarez, A.: Selection of optimal investment portfolios with cardinality constraints. In: IEEE Congress on Evolutionary Computation, 2006. CEC 2006, pp. 2382–2388. IEEE (2006)
Murray, W., Shek, H.: A local relaxation method for the cardinality constrained portfolio optimization problem. Comput. Optim. Appl. 53(3), 681–709 (2012)
OR-LIBRARY. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html. Accessed date: 21 July 2016
Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42(4), 499–524 (1984)
Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank Finance 26(7), 1443–1471 (2002)
Ruiz-Torrubiano, R., Suarez, A.: Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constraints. IEEE Comput. Intell. Mag. 5(2), 92–107 (2010)
Ruiz-Torrubiano, R., Suárez, A.: A memetic algorithm for cardinality-constrained portfolio optimization with transaction costs. Appl. Soft Comput. 36, 125–142 (2015)
Shaw, D.X., Liu, S., Kopman, L.: Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optim. Methods Softw. 23(3), 411–420 (2008)
Smith, P., Ferringer, M., Kelly, R., Min, I.: Budget-constrained portfolio trades using multiobjective optimization. Syst. Eng. 15(4), 461–470 (2012)
Soleimani, H., Golmakani, H.R., Salimi, M.H.: Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Syst. Appl. 36(3), 5058–5063 (2009)
Steuer, R.E., Qi, Y., Hirschberger, M.: Developments in multi-attribute portfolio selection. Multiple Criteria Decis. Mak. 5, 251–262 (2006)
Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-bound algorithm for mixed-integer conic quadratic programs. INFORMS J. Comput. 20(3), 438–450 (2008)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bezoui, M., Moulaï, M., Bounceur, A. et al. An iterative method for solving a bi-objective constrained portfolio optimization problem. Comput Optim Appl 72, 479–498 (2019). https://doi.org/10.1007/s10589-018-0052-9
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-018-0052-9
Keywords
- Cardinality and quantity constraints
- Cardinality portfolio selection
- Bi-objective programming
- Mixed integer programming
- Steepest descent method
- Pascoletti–Serafini method