[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An iterative method for solving a bi-objective constrained portfolio optimization problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this work, we consider the problem of portfolio optimization under cardinality and quantity constraints. We use the standard model of mean-variance in its bi-objective form which is presented here as a bi-objective quadratic programming problem under cardinality and quantity constraints. This problem is NP-hard, which is why the majority of methods proposed in the literature use metaheuristics for its resolution. In this paper, we propose an iterative method for solving constrained portfolio optimization problems. Experiments are performed with major market indices, such as the Hang Seng, DAX, FTSE, S&P 100, Nikkei, S&P 500 and Nasdaq using real-world datasets involving up to 2196 assets. Comparisons with two exact methods and a metaheuristic are performed. These results show that the new method allows to find efficient portfolio fronts in reasonable time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agarwal, S.: Portfolio selection theories: review, synthesis and critique. Asian J. Manag. 5(1), 1–7 (2014)

    Google Scholar 

  2. Altun, E., Tatlidil, H.: A Comparison of Portfolio Selection Models via Application on ISE 100 Index Data, vol. 1558, pp. 1438–1441 (2013)

  3. Anagnostopoulos, K.P., Mamanis, G.: A portfolio optimization model with three objectives and discrete variables. Comput. Oper. Res. 37(7), 1285–1297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beasley, J.E.: OR-Library: distributing test problems by electronic mail. J. Oper. Res. 41(11), 1069–1072 (1990)

    Article  Google Scholar 

  5. Bertsimas, D., Shioda, R.: Algorithm for cardinality-constrained quadratic optimization. Comput. Optim. Appl. 43(1), 1–22 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beyhaghi, M., Hawley, J.P.: Modern portfolio theory and risk management: assumptions and unintended consequences. J. Sustain. Finance Invest. 3(1), 17–37 (2013)

    Article  Google Scholar 

  7. Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Program. 74(2), 121–140 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borchers, B., Mitchell, J.E.: An improved branch and bound algorithm for mixed integer nonlinear programs. Comput. Oper. Res. 21(4), 359–367 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cesarone, Francesco: http://w3.uniroma1.it/tardella/datasets.html. Accessed date 12 Jan 2017

  10. Cesarone, F., Scozzari, A., Tardella, F.: Linear vs. quadratic portfolio selection models with hard real-world constraints. Comput. Manag. Sci. 1–26 (May 2014)

  11. Chang, T.J., Meade, N., Beasley, J.E., Sharaiha, Y.M.: Heuristics for cardinality constrained portfolio optimisation. Comput. Oper. Res. 27(13), 1271–1302 (2000)

    Article  MATH  Google Scholar 

  12. Chankong, V., Haimes, Y.Y.: Optimization-based methods for multiobjective decision-making—an overview. Large Scale Syst. Inf. Decis. Technol. 5(1), 1–33 (1983)

    MathSciNet  MATH  Google Scholar 

  13. Cura, T.: Particle swarm optimization approach to portfolio optimization. Nonlinear analysis: real world applications 10(4), 2396–2406 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dai, Y.-H., Yuan, Y.-X.: Alternate minimization gradient method. IMA J. Numer. Anal. 23(3), 377–393 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Almeida, A.T., Vetschera, R.: A note on scale transformations in the PROMETHEE V method. Eur. J. Oper. Res. 219(1), 198–200 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deng, G.-F., Lin, W.-T., Lo, C.-C.: Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. Expert Syst. Appl. 39(4), 4558–4566 (2012)

    Article  Google Scholar 

  17. Di Gaspero, L., Di Tollo, G., Roli, A., Schaerf, A.: Hybrid metaheuristics for constrained portfolio selection problems. Quant. Finance 11(10), 1473–1487 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization, vol. 436. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  19. Elton, E.J., Gruber, M.J., Brown, S.J., Goetzmann, W.N.: Modern Portfolio Theory and Investment Analysis. Wiley, New York (2009)

    Google Scholar 

  20. Fieldsend, J.E., Matatko, J., Peng, M.: Cardinality constrained portfolio optimisation. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) Intelligent Data Engineering and Automated Learning IDEAL 2004, vol. 3177, pp. 788–793. Springer Berlin Heidelberg, Berlin (2004)

    Chapter  Google Scholar 

  21. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math. Program. 106(2), 225–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fusai, G., Roncoroni, A.: Implementing Models in Quantitative Finance: Methods and Cases. Springer, New York (2007)

    MATH  Google Scholar 

  23. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22(3), 618–630 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gulpinar, N., An, L.T.H., Moeini, M.: Robust investment strategies with discrete asset choice constraints using DC programming. Optimization 59(1), 45–62 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Haimes, Y.Y.: On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1(3), 296–297 (1971)

    MathSciNet  MATH  Google Scholar 

  26. Haqiqi, K.F., Kazemi, T.: Ant colony optimization approach to portfolio optimization. In: Proceedings of the 3rd International Conference on Financial Theory and Engineering, pp. 292–296 (2012)

  27. Jobst, N.J., Horniman, M.D., Lucas, C.A., Mitra, G.: Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints. Quant. Finance 1(5), 489–501 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lee, E.K., Mitchell, J.E.: Computational experience of an interior-point SQP algorithm in a parallel branch-and-bound framework. Proc. High Perform. Optim. Tech. 1997, 97–108 (1997)

    Google Scholar 

  29. Li, B., Hoi, S.C.H.: Online portfolio selection: a survey. ACM Comput. Surv. (CSUR) 46(3), 35 (2014)

    MATH  Google Scholar 

  30. Li, D., Sun, X., Wang, J.: Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection. Math. Finance 16(1), 83–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, J., Xu, J.: Multi-objective portfolio selection model with fuzzy random returns and a compromise approach-based genetic algorithm. Inf. Sci. 220 (January 2013)

  32. Lwin, K., Rong, Q.: A hybrid algorithm for constrained portfolio selection problems. Appl. Intell. 39(2), 251–266 (2013)

    Article  Google Scholar 

  33. Lwin, K., Rong, Q., Kendall, G.: A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization. Appl. Soft Comput. 24, 757–772 (2014)

    Article  Google Scholar 

  34. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  35. Mavrotas, G., Pechak, O.: Combining mathematical programming and Monte Carlo simulation to deal with uncertainty in energy project portfolio selection. In: Cavallaro, F. (ed.) Assessment and Simulation Tools for Sustainable Energy Systems, Number 129 in Green Energy and Technology, pp. 333–356. Springer, London (2013)

    Chapter  Google Scholar 

  36. Miettinen, K.: Nonlinear multiobjective optimization, volume 12 of international series in operations research and management science (1999)

  37. Moral-Escudero, R., Ruiz-Torrubiano, R., Suarez, A.: Selection of optimal investment portfolios with cardinality constraints. In: IEEE Congress on Evolutionary Computation, 2006. CEC 2006, pp. 2382–2388. IEEE (2006)

  38. Murray, W., Shek, H.: A local relaxation method for the cardinality constrained portfolio optimization problem. Comput. Optim. Appl. 53(3), 681–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. OR-LIBRARY. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html. Accessed date: 21 July 2016

  40. Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42(4), 499–524 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank Finance 26(7), 1443–1471 (2002)

    Article  Google Scholar 

  42. Ruiz-Torrubiano, R., Suarez, A.: Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constraints. IEEE Comput. Intell. Mag. 5(2), 92–107 (2010)

    Article  Google Scholar 

  43. Ruiz-Torrubiano, R., Suárez, A.: A memetic algorithm for cardinality-constrained portfolio optimization with transaction costs. Appl. Soft Comput. 36, 125–142 (2015)

    Article  Google Scholar 

  44. Shaw, D.X., Liu, S., Kopman, L.: Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optim. Methods Softw. 23(3), 411–420 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Smith, P., Ferringer, M., Kelly, R., Min, I.: Budget-constrained portfolio trades using multiobjective optimization. Syst. Eng. 15(4), 461–470 (2012)

    Article  Google Scholar 

  46. Soleimani, H., Golmakani, H.R., Salimi, M.H.: Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Syst. Appl. 36(3), 5058–5063 (2009)

    Article  Google Scholar 

  47. Steuer, R.E., Qi, Y., Hirschberger, M.: Developments in multi-attribute portfolio selection. Multiple Criteria Decis. Mak. 5, 251–262 (2006)

    Google Scholar 

  48. Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-bound algorithm for mixed-integer conic quadratic programs. INFORMS J. Comput. 20(3), 438–450 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madani Bezoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezoui, M., Moulaï, M., Bounceur, A. et al. An iterative method for solving a bi-objective constrained portfolio optimization problem. Comput Optim Appl 72, 479–498 (2019). https://doi.org/10.1007/s10589-018-0052-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-018-0052-9

Keywords

Mathematics Subject Classification

Navigation