Abstract
Optimal control problems are considered with linear elliptic equations in polar coordinates. The objective contains \(L^1\)-type norms, which promote sparse optimal controls. The particular iterated structure of these norms gives rise to either annular or sectorial sparsity patterns. Optimality conditions and numerical solution approaches are developed.
Similar content being viewed by others
References
Stadler, G.: Elliptic optimal control problems with \({L}^1\)-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44(2), 159–181 (2009). doi: 10.1007/s10589-007-9150-9
Wachsmuth, G., Wachsmuth, D.: Convergence and regularization results for optimal control problems with sparsity functional. ESAIM 17(3), 858–886 (2011). doi:10.1051/cocv/2010027
Casas, E., Herzog, R., Wachsmuth, G.: Optimality conditions and error analysis of semilinear elliptic control problems with \(L^1\) cost functional. SIAM J. Optim. 22(3), 795–820 (2012). doi: 10.1137/110834366
Casas, E., Herzog, R., Wachsmuth, G.: Approximation of sparse controls in semilinear equations by piecewise linear functions. Numer. Math. 122(4), 645–669 (2012). doi:10.1007/s00211-012-0475-7
Clason, C., Kunisch, K.: A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM 17(1), 243–266 (2011). doi:10.1051/cocv/2010003
Clason, C., Kunisch, K.: A measure space approach to optimal source placement. Comput. Optim. Appl. Int. J. 53(1), 155–171 (2012). doi:10.1007/s10589-011-9444-9
Casas, E., Clason, C., Kunisch, K.: Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50(4), 1735–1752 (2012). doi:10.1137/110843216
Herzog, R., Stadler, G., Wachsmuth, G.: Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50(2), 943–963 (2012). doi:10.1137/100815037
Casas, E., Clason, C., Kunisch, K.: Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51(1), 28–63 (2013). doi:10.1137/120872395
van Niekerk, J., Tongue, B., Packard, A.: Active control of a circular plate to reduce transient noise transmission. J. Sound Vib. 183(4), 643–662 (1995). doi:10.1006/jsvi.1995.0277
Coorpender, S., Finkel, D., Kyzar, J., Sims, R., Smirnova, A., Tawhid, M., Bouton, C., Smith, R.: Modeling and optimization issues concerning a circular piezoelectric actuator design. Tech. Rep. CRSC-TR99-22, North Carolina State University (1999). http://www.ncsu.edu/crsc/reports/reports99.html
Raghavan, A., Cesnik, C.E.S.: Modeling of piezoelectric-based lamb wave generation and sensing for structural health monitoring. In: Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, vol. 5391, pp. 419–430 (2004). DOI: 10.1117/12.540269
Yeum, C.M., Sohn, H., Ihn, J.B.: Lamb wave mode decomposition using concentric ring and circular piezoelectric transducers. Wave Motion Int. J. Rep. Res. Wave Phenom. 48(4), 358–370 (2011). doi:10.1016/j.wavemoti.2011.01.001
Li, X., Du, H., Xu, L., Hu, Y., Xu, L.: Optimization of a circular thin-film piezoelectric actuator lying on a clamped multilayered elastic plate. IEEE Trans. Ultrason. 56(7), 1469–1475 (2009)
Fremlin, D.H.: Measure theory. Vol. 2. Torres Fremlin, Colchester. Broad foundations, Corrected second printing of the 2001 original (2003)
Diestel, J., Uhl, J.: Vector Measures. Mathematical Surveys and Monographs. American Mathematical Society, Providence (1977)
Ioffe, A.D., Tichomirov, V.M.: Theorie der Extremalaufgaben. VEB Deutscher Verlag der Wissenschaften, Berlin (1979)
Ekeland, I., Temam, R.: Convex Analysis and Variational Problems, Classics in Applied Mathematics, vol. 28. SIAM, Philadelphia (1999)
Falk, R.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)
Casas, E., Mateos, M., Tröltzsch, F.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31, 193–219 (2005)
Brandts, J., Hannukainen, A., Korotov, S., Křížek, M.: On angle conditions in the finite element method. SIAM J. 56, 81–95 (2011)
Acknowledgments
The authors wish to thank two anonymous reviewers for their helpful comments and in particular for the suggestion of an alternative discretization scheme, which led to the addition of Remark 3.2.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Herzog, R., Obermeier, J. & Wachsmuth, G. Annular and sectorial sparsity in optimal control of elliptic equations. Comput Optim Appl 62, 157–180 (2015). https://doi.org/10.1007/s10589-014-9721-5
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-014-9721-5