[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Annular and sectorial sparsity in optimal control of elliptic equations

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Optimal control problems are considered with linear elliptic equations in polar coordinates. The objective contains \(L^1\)-type norms, which promote sparse optimal controls. The particular iterated structure of these norms gives rise to either annular or sectorial sparsity patterns. Optimality conditions and numerical solution approaches are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stadler, G.: Elliptic optimal control problems with \({L}^1\)-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44(2), 159–181 (2009). doi: 10.1007/s10589-007-9150-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Wachsmuth, G., Wachsmuth, D.: Convergence and regularization results for optimal control problems with sparsity functional. ESAIM 17(3), 858–886 (2011). doi:10.1051/cocv/2010027

    Article  MathSciNet  MATH  Google Scholar 

  3. Casas, E., Herzog, R., Wachsmuth, G.: Optimality conditions and error analysis of semilinear elliptic control problems with \(L^1\) cost functional. SIAM J. Optim. 22(3), 795–820 (2012). doi: 10.1137/110834366

    Article  MathSciNet  MATH  Google Scholar 

  4. Casas, E., Herzog, R., Wachsmuth, G.: Approximation of sparse controls in semilinear equations by piecewise linear functions. Numer. Math. 122(4), 645–669 (2012). doi:10.1007/s00211-012-0475-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Clason, C., Kunisch, K.: A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM 17(1), 243–266 (2011). doi:10.1051/cocv/2010003

    Article  MathSciNet  MATH  Google Scholar 

  6. Clason, C., Kunisch, K.: A measure space approach to optimal source placement. Comput. Optim. Appl. Int. J. 53(1), 155–171 (2012). doi:10.1007/s10589-011-9444-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Casas, E., Clason, C., Kunisch, K.: Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50(4), 1735–1752 (2012). doi:10.1137/110843216

    Article  MathSciNet  MATH  Google Scholar 

  8. Herzog, R., Stadler, G., Wachsmuth, G.: Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50(2), 943–963 (2012). doi:10.1137/100815037

    Article  MathSciNet  MATH  Google Scholar 

  9. Casas, E., Clason, C., Kunisch, K.: Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51(1), 28–63 (2013). doi:10.1137/120872395

    Article  MathSciNet  MATH  Google Scholar 

  10. van Niekerk, J., Tongue, B., Packard, A.: Active control of a circular plate to reduce transient noise transmission. J. Sound Vib. 183(4), 643–662 (1995). doi:10.1006/jsvi.1995.0277

    Article  MATH  Google Scholar 

  11. Coorpender, S., Finkel, D., Kyzar, J., Sims, R., Smirnova, A., Tawhid, M., Bouton, C., Smith, R.: Modeling and optimization issues concerning a circular piezoelectric actuator design. Tech. Rep. CRSC-TR99-22, North Carolina State University (1999). http://www.ncsu.edu/crsc/reports/reports99.html

  12. Raghavan, A., Cesnik, C.E.S.: Modeling of piezoelectric-based lamb wave generation and sensing for structural health monitoring. In: Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, vol. 5391, pp. 419–430 (2004). DOI: 10.1117/12.540269

  13. Yeum, C.M., Sohn, H., Ihn, J.B.: Lamb wave mode decomposition using concentric ring and circular piezoelectric transducers. Wave Motion Int. J. Rep. Res. Wave Phenom. 48(4), 358–370 (2011). doi:10.1016/j.wavemoti.2011.01.001

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, X., Du, H., Xu, L., Hu, Y., Xu, L.: Optimization of a circular thin-film piezoelectric actuator lying on a clamped multilayered elastic plate. IEEE Trans. Ultrason. 56(7), 1469–1475 (2009)

    Article  Google Scholar 

  15. Fremlin, D.H.: Measure theory. Vol. 2. Torres Fremlin, Colchester. Broad foundations, Corrected second printing of the 2001 original (2003)

  16. Diestel, J., Uhl, J.: Vector Measures. Mathematical Surveys and Monographs. American Mathematical Society, Providence (1977)

    Google Scholar 

  17. Ioffe, A.D., Tichomirov, V.M.: Theorie der Extremalaufgaben. VEB Deutscher Verlag der Wissenschaften, Berlin (1979)

    MATH  Google Scholar 

  18. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems, Classics in Applied Mathematics, vol. 28. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  19. Falk, R.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  20. Casas, E., Mateos, M., Tröltzsch, F.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31, 193–219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brandts, J., Hannukainen, A., Korotov, S., Křížek, M.: On angle conditions in the finite element method. SIAM J. 56, 81–95 (2011)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank two anonymous reviewers for their helpful comments and in particular for the suggestion of an alternative discretization scheme, which led to the addition of Remark 3.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Wachsmuth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herzog, R., Obermeier, J. & Wachsmuth, G. Annular and sectorial sparsity in optimal control of elliptic equations. Comput Optim Appl 62, 157–180 (2015). https://doi.org/10.1007/s10589-014-9721-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9721-5

Keywords

Mathematics Subject Classification

Navigation