[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An incremental clustering algorithm based on hyperbolic smoothing

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Clustering is an important problem in data mining. It can be formulated as a nonsmooth, nonconvex optimization problem. For the most global optimization techniques this problem is challenging even in medium size data sets. In this paper, we propose an approach that allows one to apply local methods of smooth optimization to solve the clustering problems. We apply an incremental approach to generate starting points for cluster centers which enables us to deal with nonconvexity of the problem. The hyperbolic smoothing technique is applied to handle nonsmoothness of the clustering problems and to make it possible application of smooth optimization algorithms to solve them. Results of numerical experiments with eleven real-world data sets and the comparison with state-of-the-art incremental clustering algorithms demonstrate that the smooth optimization algorithms in combination with the incremental approach are powerful alternative to existing clustering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Sultan, K.S.: A tabu search approach to the clustering problem. Pattern Recognit. 28(9), 1443–1451 (1995)

    Article  Google Scholar 

  2. Bache, K., Lichman, M.: UCI Machine Learning Repository. School of Information and Computer Science, University of California, Irvine, CA (2013). http://archive.ics.uci.edu/ml.

  3. Bagirov, A.M.: Modified global \(k\)-means algorithm for sum-of-squares clustering problems. Pattern Recognit. 41(10), 3192–3199 (2008)

    Article  MATH  Google Scholar 

  4. Bagirov, A.M., Karasozen, B., Sezer, M.: Discrete gradient method: A derivative free method for nonsmooth optimization. J. Optim. Theory Appl. 137, 317–334 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bagirov, A.M., Rubinov, A.M., Yearwood, J.: A global optimisation approach to classification. Optim. Eng. 3(2), 129–155 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bagirov, A.M., Rubinov, A.M., Soukhoroukova, N.V., Yearwood, J.: Supervised and unsupervised data classification via nonsmooth and global optimization. TOP: Span. Oper. Res. J. 11(1), 1–93 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bagirov, A.M., Ugon, J.: An algorithm for minimizing clustering functions. Optimization 54(4–5), 351–368 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bagirov, A.M., Ugon, J., Webb, D.: Fast modified global \(k\)-means algorithm for sum-of-squares clustering problems. Pattern Recognit. 44, 866–876 (2011)

    Article  MATH  Google Scholar 

  9. Bagirov, A.M., Yearwood, J.: A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems. Eur. J. Oper. Res. 170, 578–596 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bagirov, A.M., Al Nuaimat, A., Sultanova, N.: Hyperbolic smoothing method for minimax problems. Optimization 62(6), 759–782 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bock, H.H.: Clustering and neural networks. In: Rizzi, A., Vichi, M., Bock, H.H. (eds.) Advances in Data Science and Classification, pp. 265–277. Springer, Berlin (1998)

    Chapter  Google Scholar 

  12. Brown, D.E., Entail, C.L.: A practical application of simulated annealing to the clustering problem. Pattern Recognit. 25, 401–412 (1992)

    Article  Google Scholar 

  13. Diehr, G.: Evaluation of a branch and bound algorithm for clustering. SIAM J. Sci. Stat. Comput. 6, 268–284 (1985)

    Article  MATH  Google Scholar 

  14. Dubes, R., Jain, A.K.: Clustering techniques: the user’s dilemma. Pattern Recognit. 8, 247–260 (1976)

    Article  Google Scholar 

  15. GAMS: The Solver Manuals. GAMS Development Corporation, Washington, D.C. (2012)

    Google Scholar 

  16. Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Math. Programm. 79(1–3), 191–215 (1997)

    MATH  MathSciNet  Google Scholar 

  17. Hansen, P., Mladenovic, N.: \(J\)-means: a new heuristic for minimum sum-of-squares clustering. Pattern Recognit. 4, 405–413 (2001)

    Article  Google Scholar 

  18. Hansen, P., Mladenovic, N.: Variable neighborhood decomposition search. J. Heuristic. 7, 335–350 (2001)

    Article  MATH  Google Scholar 

  19. Koontz, W.L.G., Narendra, P.M., Fukunaga, K.: A branch and bound clustering algorithm. IEEE Trans. Comput. 24, 908–915 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jensen, R.E.: A dynamic programming algorithm for cluster analysis. Appl. Stat. 28, 1034–1057 (1969)

    Google Scholar 

  21. Likas, A., Vlassis, M., Verbeek, J.: The global \(k\)-means clustering algorithm. Pattern Recognit. 36, 451–461 (2003)

    Article  Google Scholar 

  22. du Merle, O., Hansen, P., Jaumard, B., Mladenovic, N.: An interior point method for minimum sum-of-squares clustering. SIAM J. Sci. Comput. 21, 1485–1505 (2001)

    Article  Google Scholar 

  23. Reinelt, G.: TSP-LIB-A traveling salesman library. ORSA J. Comput. 3, 319–350 (1991)

    Article  Google Scholar 

  24. Selim, S.Z., Al-Sultan, K.S.: A simulated annealing algorithm for the clustering. Pattern Recognit. 24(10), 1003–1008 (1991)

    Article  MathSciNet  Google Scholar 

  25. Spath, H.: Cluster Analysis Algorithms. Ellis Horwood Limited, Chichester (1980)

    Google Scholar 

  26. Sun, L.X., Xie, Y.L., Song, X.H., Wang, J.H., Yu, R.Q.: Cluster analysis by simulated annealing. Comput. Chem. 18, 103–108 (1994)

    Article  MATH  Google Scholar 

  27. Teboulle, M.: A unified continuous optimization framework for center-based clustering methods. J. Mach. Learn. Res. 8, 65–102 (2007)

    MATH  MathSciNet  Google Scholar 

  28. Xavier, A.E.: The hyperbolic smoothing clustering method. Pattern Recognit. 43(3), 731–737 (2010)

    Article  MATH  Google Scholar 

  29. Xavier, A.E., Oliveira, A.A.F.D.: Optimal covering of plane domains by circles via hyperbolic smoothing. J. Glob. Optim. 31(3), 493–504 (2005)

    Article  MATH  Google Scholar 

  30. Xavier, A.E., Xavier, V.L.: Solving the minimum sum-of-squares clustering problem by hyperbolic smoothing and partition into boundary and gravitational regions. Pattern Recognit. 44(1), 70–77 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Dr. Burak Ordin acknowledges TUBITAK for its support of his visit to the University of Ballarat, Australia. This research by A. M. Bagirov was supported under Australian Research Council’s Discovery Projects funding scheme (Project No. DP140103213). We are grateful to two anonymous referees for their comments and criticism that helped the authors to significantly improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bagirov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagirov, A.M., Ordin, B., Ozturk, G. et al. An incremental clustering algorithm based on hyperbolic smoothing. Comput Optim Appl 61, 219–241 (2015). https://doi.org/10.1007/s10589-014-9711-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9711-7

Keywords

Mathematics Subject Classification

Navigation