[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optimizing fiber orientation in fiber-reinforced materials using efficient upscaling

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We present an efficient algorithm to find an optimal fiber orientation in composite materials. Within a two-scale setting fiber orientation is regarded as a function in space on the macrolevel. The optimization problem is formulated within a function space setting which makes the imposition of smoothness requirements straightforward and allows for rather general convex objective functionals. We show the existence of a global optimum in the Sobolev space H 1(Ω). The algorithm we use is a one level optimization algorithm which optimizes with respect to the fiber orientation directly. The costly solve of a big number of microlevel problems is avoided using coordinate transformation formulas. We use an adjoint-based gradient type algorithm, but generalizations to higher-order schemes are straightforward. The algorithm is tested for a prototypical numerical example and its behaviour with respect to mesh independence and dependence on the regularization parameter is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams, R., Bacon, D.: Effect of fiber orientation and laminate geometry on the dynamic properties of cfrp. J. Compos. Mater. 7(4), 402–428 (1973)

    Article  Google Scholar 

  2. Allaire, G.: Shape Optimization by the Homogenization Method. Springer, Berlin (2001)

    Google Scholar 

  3. Allaire, G., Bonnetier, E., Francfort, G., Jouve, F.: Shape optimization by the homogenization method. Numer. Math. 76, 27–68 (1997). doi:10.1007/s002110050253

    Article  MathSciNet  MATH  Google Scholar 

  4. Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  5. Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 16(1), 1–3 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beatty, M.F.: Kinematics of finite rigid body displacements. Ann. J. Phys. 34, 949–956 (1966)

    MATH  Google Scholar 

  7. Bendsøe, M.P.: Optimization of Structural Topology, Shape and Material. Springer, Berlin (1995)

    Book  Google Scholar 

  8. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  Google Scholar 

  9. Christensen, R.M.: Mechanics of composite materials. Wiley, New York (1979)

    Google Scholar 

  10. Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford Lecture Series in Mathematics and its applications. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  11. Díaz, A., Lipton, R.: Optimal material layout for 3d elastic structures. Struct. Optim. 13, 60–64 (1997)

    Article  Google Scholar 

  12. FeelMath: Finite elements for elastic materials and homogenization. Developed at Fraunhofer Institute for Industrial Mathematics

  13. Geihe, B., Lenz, M., Rumpf, M., Schultz, R.: Risk averse elastic shape optimization with parametrized fine scale geometry. Math. Program. 1–21 (2012). doi:10.1007/s10107-012-0531-1

  14. GeoDict: Geometric material models and computational predictions of material properties. URL http://www.geodict.com. Developed at Fraunhofer Institute for Industrial Mathematics

  15. Hashin, Z., Shtrikman, S.: A variational approach to the theory of elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, vol. 23. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  17. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Kluwer Academic, Dordrecht (2000)

    Book  MATH  Google Scholar 

  18. Kardos, J.: Critical issues in achieving desirable mechanicproperties for short fiber composites. Pure Appl. Chem. 57(11), 1651–1657 (1985)

    Article  Google Scholar 

  19. Kroener, A., Vexler, B.: A priori error estimates for elliptic optimal control problems with a bilinear state equation. J. Comput. Appl. Math. 230(2), 781–802 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meyer, O.: Kurzfaser-preform-Technologie zur kraftflussgerechten Herstellung von Faserverbundbauteilen. Ph.D. thesis, Universität Stuttgart (2008)

  21. Meyers, N.G.: An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Super. Pisa 17(3), 189–206 (1963)

    MathSciNet  MATH  Google Scholar 

  22. Moita, J., Infante Barbosa, J., Mota Soares, C., Mota Soares, C.: Sensitivity analysis and optimal design of geometrically non-linear laminated plates and shells. Comput. Struct. 76(1–3), 407–420 (2000)

    Article  Google Scholar 

  23. Murat, F.: Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients. Ann. Mat. Pura Appl. 112, 49–68 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Norris, A.: Optimal orientation of anisotropic solids. Q. J. Mech. Appl. Math. 59(1), 29–52 (2005)

    Article  MathSciNet  Google Scholar 

  25. Oleinik, O., Shamaev, A., Yosifian, G.: Mathematical Problems in Elasticity and Homogenization. Studies in Mathematics and Its Applications, vol. 26. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  26. Papanicolau, G., Bensoussan, A., Lions, J.: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications. Elsevier Science, Amsterdam (1978)

    Google Scholar 

  27. Pedersen, P.: On optimal orientation of orthotropic materials. Struct. Multidiscip. Optim. 1, 101–106 (1989)

    Article  Google Scholar 

  28. Rodrigues, H., Guedes, J., Bendsøe, M.: Hierarchical optimization of material and structure. Struct. Multidiscip. Optim. 24, 1–10 (2002)

    Article  Google Scholar 

  29. Seregin, G., Troitskii, V.: On the best position of elastic symmetry planes in an orthotropic body. J. Appl. Math. Mech. 45, 139–142 (1981)

    Article  MATH  Google Scholar 

  30. Staub, S., Andrä, H., Kabel, M., Zangmeister, T.: Multi-scale simulation of viscoelastic fiber-reinforced composites. Tech. Mech. 32(1), 70–83 (2012)

    Google Scholar 

  31. Stegmann, J.: Analysis and optimization of laminated composite shell structures. Dissertation, Institute of Mechanical Engineering, Aalborg University, Denmark (2005)

  32. Stegmann, J., Lund, E.: Discrete material optimization of general composite shell structures. Int. J. Numer. Methods Eng. 62(14), 2009–2027 (2005)

    Article  MATH  Google Scholar 

  33. Suarez, S., Gibson, R., Sun, C., Chaturvedi, S.: The influence of fiber length and fiber orientation on damping and stiffness of polymer composite materials. Exp. Mech. 26, 175–184 (1986)

    Article  Google Scholar 

  34. Theocaris, P., Stavroulakis, G.: Optimal material design in composites: an iterative approach based on homogenized cells. Comput. Methods Appl. Mech. Eng. 169, 31–42 (1999)

    Article  MATH  Google Scholar 

  35. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Graduate Studies in Mathematics. American Mathematical Society, Providence (2010)

    Book  Google Scholar 

Download references

Acknowledgements

The present work was funded by the Stiftung Rheinland-Pfalz für Innovation within the project “Multiskalensimulation für die Entwicklung von Hochleistungsverbundwerkstoffen (MUSSEH)” at Fraunhofer Institute for Industrial Mathematics. The third author was supported by the DFG via SPP 1253.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Frei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frei, S., Andrä, H., Pinnau, R. et al. Optimizing fiber orientation in fiber-reinforced materials using efficient upscaling. Comput Optim Appl 62, 111–129 (2015). https://doi.org/10.1007/s10589-013-9630-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9630-z

Keywords

Navigation