Abstract
We present an efficient algorithm to find an optimal fiber orientation in composite materials. Within a two-scale setting fiber orientation is regarded as a function in space on the macrolevel. The optimization problem is formulated within a function space setting which makes the imposition of smoothness requirements straightforward and allows for rather general convex objective functionals. We show the existence of a global optimum in the Sobolev space H 1(Ω). The algorithm we use is a one level optimization algorithm which optimizes with respect to the fiber orientation directly. The costly solve of a big number of microlevel problems is avoided using coordinate transformation formulas. We use an adjoint-based gradient type algorithm, but generalizations to higher-order schemes are straightforward. The algorithm is tested for a prototypical numerical example and its behaviour with respect to mesh independence and dependence on the regularization parameter is studied.
Similar content being viewed by others
References
Adams, R., Bacon, D.: Effect of fiber orientation and laminate geometry on the dynamic properties of cfrp. J. Compos. Mater. 7(4), 402–428 (1973)
Allaire, G.: Shape Optimization by the Homogenization Method. Springer, Berlin (2001)
Allaire, G., Bonnetier, E., Francfort, G., Jouve, F.: Shape optimization by the homogenization method. Numer. Math. 76, 27–68 (1997). doi:10.1007/s002110050253
Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1990)
Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 16(1), 1–3 (1966)
Beatty, M.F.: Kinematics of finite rigid body displacements. Ann. J. Phys. 34, 949–956 (1966)
Bendsøe, M.P.: Optimization of Structural Topology, Shape and Material. Springer, Berlin (1995)
Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)
Christensen, R.M.: Mechanics of composite materials. Wiley, New York (1979)
Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford Lecture Series in Mathematics and its applications. Oxford University Press, Oxford (1999)
Díaz, A., Lipton, R.: Optimal material layout for 3d elastic structures. Struct. Optim. 13, 60–64 (1997)
FeelMath: Finite elements for elastic materials and homogenization. Developed at Fraunhofer Institute for Industrial Mathematics
Geihe, B., Lenz, M., Rumpf, M., Schultz, R.: Risk averse elastic shape optimization with parametrized fine scale geometry. Math. Program. 1–21 (2012). doi:10.1007/s10107-012-0531-1
GeoDict: Geometric material models and computational predictions of material properties. URL http://www.geodict.com. Developed at Fraunhofer Institute for Industrial Mathematics
Hashin, Z., Shtrikman, S.: A variational approach to the theory of elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)
Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, vol. 23. Springer, Berlin (2009)
Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Kluwer Academic, Dordrecht (2000)
Kardos, J.: Critical issues in achieving desirable mechanicproperties for short fiber composites. Pure Appl. Chem. 57(11), 1651–1657 (1985)
Kroener, A., Vexler, B.: A priori error estimates for elliptic optimal control problems with a bilinear state equation. J. Comput. Appl. Math. 230(2), 781–802 (2009)
Meyer, O.: Kurzfaser-preform-Technologie zur kraftflussgerechten Herstellung von Faserverbundbauteilen. Ph.D. thesis, Universität Stuttgart (2008)
Meyers, N.G.: An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Super. Pisa 17(3), 189–206 (1963)
Moita, J., Infante Barbosa, J., Mota Soares, C., Mota Soares, C.: Sensitivity analysis and optimal design of geometrically non-linear laminated plates and shells. Comput. Struct. 76(1–3), 407–420 (2000)
Murat, F.: Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients. Ann. Mat. Pura Appl. 112, 49–68 (1977)
Norris, A.: Optimal orientation of anisotropic solids. Q. J. Mech. Appl. Math. 59(1), 29–52 (2005)
Oleinik, O., Shamaev, A., Yosifian, G.: Mathematical Problems in Elasticity and Homogenization. Studies in Mathematics and Its Applications, vol. 26. North-Holland, Amsterdam (1992)
Papanicolau, G., Bensoussan, A., Lions, J.: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications. Elsevier Science, Amsterdam (1978)
Pedersen, P.: On optimal orientation of orthotropic materials. Struct. Multidiscip. Optim. 1, 101–106 (1989)
Rodrigues, H., Guedes, J., Bendsøe, M.: Hierarchical optimization of material and structure. Struct. Multidiscip. Optim. 24, 1–10 (2002)
Seregin, G., Troitskii, V.: On the best position of elastic symmetry planes in an orthotropic body. J. Appl. Math. Mech. 45, 139–142 (1981)
Staub, S., Andrä, H., Kabel, M., Zangmeister, T.: Multi-scale simulation of viscoelastic fiber-reinforced composites. Tech. Mech. 32(1), 70–83 (2012)
Stegmann, J.: Analysis and optimization of laminated composite shell structures. Dissertation, Institute of Mechanical Engineering, Aalborg University, Denmark (2005)
Stegmann, J., Lund, E.: Discrete material optimization of general composite shell structures. Int. J. Numer. Methods Eng. 62(14), 2009–2027 (2005)
Suarez, S., Gibson, R., Sun, C., Chaturvedi, S.: The influence of fiber length and fiber orientation on damping and stiffness of polymer composite materials. Exp. Mech. 26, 175–184 (1986)
Theocaris, P., Stavroulakis, G.: Optimal material design in composites: an iterative approach based on homogenized cells. Comput. Methods Appl. Mech. Eng. 169, 31–42 (1999)
Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Graduate Studies in Mathematics. American Mathematical Society, Providence (2010)
Acknowledgements
The present work was funded by the Stiftung Rheinland-Pfalz für Innovation within the project “Multiskalensimulation für die Entwicklung von Hochleistungsverbundwerkstoffen (MUSSEH)” at Fraunhofer Institute for Industrial Mathematics. The third author was supported by the DFG via SPP 1253.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Frei, S., Andrä, H., Pinnau, R. et al. Optimizing fiber orientation in fiber-reinforced materials using efficient upscaling. Comput Optim Appl 62, 111–129 (2015). https://doi.org/10.1007/s10589-013-9630-z
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-013-9630-z