[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A smoothing-regularization approach to mathematical programs with vanishing constraints

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider a numerical approach for the solution of a difficult class of optimization problems called mathematical programs with vanishing constraints. The basic idea is to reformulate the characteristic constraints of the program via a nonsmooth function and to eventually smooth it and regularize the feasible set with the aid of a certain smoothing- and regularization parameter t>0 such that the resulting problem is more tractable and coincides with the original program for t=0. We investigate the convergence behavior of a sequence of stationary points of the smooth and regularized problems by letting t tend to zero. Numerical results illustrating the performance of the approach are given. In particular, a large-scale example from topology optimization of mechanical structures with local stress constraints is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Achtziger, W.: On optimality conditions and primal-dual methods for the detection of singular optima. In: Cinquini, C., Rovati, M., Venini, P., Nascimbene, R. (eds.) Proceedings of the Fifth World Congress of Structural and Multidisciplinary Optimization (WCSMO-5), pp. 1–6. Schönenfeld & Ziegler, Milan (2004). Paper 073

    Google Scholar 

  2. Achtziger, W., Kanzow, C.: Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math. Program. 114, 69–99 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anitescu, M.: Global convergence of an elastic mode approach for a class of mathematical programs with equilibrium constraints. SIAM J. Optim. 16, 120–145 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazaraa, M.S., Shetty, C.M.: Foundations of Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 122. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  5. Bendsøe, M.P., Sigmund, O.: Topology Optimization—Theory, Methods and Applications, 2nd edn. Springer, Heidelberg (2003)

    Google Scholar 

  6. Byrd, R.H., Nocedal, J., Waltz, R.A.: KNITRO: an integrated package for nonlinear optimization. In: di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization, pp. 35–59. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Chen, C., Mangasarian, O.L.: A class of smoothing functions for nonlinear and mixed complementarity problems. Comput. Optim. Appl. 5, 97–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, G.D., Guo, X.: ε-Relaxed approach in structural topology optimization. Struct. Optim. 13, 258–266 (1997)

    Article  Google Scholar 

  9. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  10. DeMiguel, V., Friedlander, M.P., Nogales, F.J., Scholtes, S.: A two-sided relaxation scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 16, 587–609 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dorsch, D., Shikhman, V., Stein, O.: MPVC: critical point theory. J. Glob. Optim. 52, 591–605 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Facchinei, F., Jiang, H., Qi, L.: A smoothing method for mathematical programs with equilibrium constraints. Math. Program. 85, 107–134 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fukushima, M., Pang, J.S.: Convergence of a smoothing continuation method for mathematical programs with complementarity constraints. In: Théra, M., Tichatschke, R. (eds.) Ill-Posed Variational Problems and Regularization Techniques. Lecture Notes in Economics and Mathematical Systems, vol. 447. Springer, Berlin (1999)

    Google Scholar 

  14. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guignard, M.: Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space. SIAM J. Control 7, 232–241 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, X., Cheng, G.D., Yamazaki, K.: A new approach for the solution of singular optima in truss topology optimization with stress and local buckling constraints. Struct. Multidiscip. Optim. 22, 364–573 (2001)

    Article  Google Scholar 

  17. Hoheisel, T., Kanzow, C.: On the Abadie and Guignard constraint qualification for mathematical programs with vanishing constraints. Optimization 58, 431–448 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoheisel, T., Kanzow, C.: Stationary conditions for mathematical programs with vanishing constraints using weak constraint qualifications. J. Math. Anal. Appl. 337, 292–310 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hoheisel, T., Kanzow, C.: First- and second-order optimality conditions for mathematical programs with vanishing constraints. Appl. Math. 52, 495–514 (2007) (special issue dedicated to J.V. Outrata’s 60. birthday)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hoheisel, T., Kanzow, C., Outrata, J.V.: Exact penalty results for mathematical programs with vanishing constraints. Nonlinear Anal.: Theory, Methods, Appl. 72, 2514–2526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hoheisel, T., Kanzow, C., Schwartz, A.: Convergence of a local regularization approach for mathematical programs with complementarity or vanishing constraints. Optim. Methods Softw. 27, 483–512 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu, X.M., Ralph, D.: Convergence of a penalty method for mathematical programming with complementarity constraints. J. Optim. Theory Appl. 123, 365–390 (2004)

    Article  MathSciNet  Google Scholar 

  23. Izmailov, A.F., Pogosyan, A.L.: Optimality conditions and Newton-type methods for mathematical programs with vanishing constraints. Comput. Math. Math. Phys. 49, 1128–1140 (2009)

    Article  MathSciNet  Google Scholar 

  24. Izmailov, A.F., Solodov, M.V.: Mathematical programs with vanishing constraints: optimality conditions, sensitivity and a relaxation method. J. Optim. Theory Appl. 142, 501–532 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kirches, C., Potschka, A., Bock, H.G., Sager, S.: A parametric active set method for quadratic programs with vanishing constraints. Technical report, Interdisciplinary Center for Scientific Computing, University of Heidelberg (March 2012)

  26. Kirsch, U.: On singular topologies in optimum structural design. Struct. Optim. 2, 133–142 (1990)

    Article  Google Scholar 

  27. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer, New York (1999)

    Book  MATH  Google Scholar 

  28. Peterson, D.W.: A review of constraint qualifications in finite-dimensional spaces. SIAM Rev. 15, 639–654 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ralph, D., Wright, S.J.: Some properties of regularization and penalization schemes for MPECs. Optim. Methods Softw. 19, 527–556 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11, 918–936 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous referees for their very constructive comments on an early version of this paper. Some preliminary works on this paper were finished while the first author was guest at the Department of Mathematics at the Technical University of Denmark (DTU), Lyngby/Copenhagen, Denmark. W. Achtziger is indebted to the Otto-Mønsted-Fonds making this stay possible. Moreover, W. Achtziger thanks M. Stolpe (DTU Wind Energy) for his very useful hints during the work on the numerical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Achtziger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achtziger, W., Hoheisel, T. & Kanzow, C. A smoothing-regularization approach to mathematical programs with vanishing constraints. Comput Optim Appl 55, 733–767 (2013). https://doi.org/10.1007/s10589-013-9539-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9539-6

Keywords

Navigation