[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Solving the p-Median Problem with a Semi-Lagrangian Relaxation

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Lagrangian relaxation is commonly used in combinatorial optimization to generate lower bounds for a minimization problem. We study a modified Lagrangian relaxation which generates an optimal integer solution. We call it semi-Lagrangian relaxation and illustrate its practical value by solving large-scale instances of the p-median problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Avella and A. Sassano, “On the p-median polytope,” Mathematical Programming, vol. 89, pp. 395–411, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Avella, A. Sassano, and I. Vasil’ev, “Computational study of large-scale p-median problems,” Technical Report, Dipartimento Di Informatica e Sistemistica, Università di Roma “La Sapienza,” 2003.

  3. O. Briant and D. Naddef, “The optimal diversity management problem,” Operations Research, vol. 52, no. 4, 2004.

  4. Christofides, Graph Theory: An Algorithmic Approach. Academic Press, New York, 1975.

  5. I.R.J. de Farias, “A family of facets for the uncapacitated p-median polytope,” Operations Research Letters, vol. 28, pp. 161–167, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  6. O. du Merle and J.-P. Vial, “Proximal-ACCPM, a cutting plane method for column generation and lagrangian relaxation: Application to the p-median problem,” Technical Report, Logilab, HEC, University of Geneva, 2002.

  7. H. Everett III, “Generalized lagrange multiplier method for solving problems of optimum allocation of resources,” Operations Research, vol. 11, no. 3, pp. 399–471, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  8. A.M. Geoffrion, “Lagrangean relaxation for integer programming,” Mathematical Programming Study, vol. 2, pp. 82–114, 1974.

    MATH  MathSciNet  Google Scholar 

  9. J.L. Goffin, A. Haurie, and J.P. Vial, “Decomposition and nondifferentiable optimization with the projective algorithm,” Management Science, vol. 37, pp. 284–302, 1992.

    Article  Google Scholar 

  10. J.-L. Goffin and J. Vial, “Convex nondifferentiable optimization: A survey focussed on the analytic center cutting plane method,” Technical Report 99.02, Geneva University—HEC—Logilab, 1999.

  11. M. Guignard and S. Kim, “Lagrangean decomposition: A model yielding stronger Lagrangean bounds,” Mathematical Programming, vol. 39, pp. 215–228, 1987.

    MATH  MathSciNet  Google Scholar 

  12. P. Hansen and B. Jaumard, “Cluster analysis and mathematical programming,” Mathematical Programming, vol. 79, pp. 191–215, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Hansen, N. Mladenovic, and D. Perez-Brito, “Variable neighborhood decomposition search,” Journal of Heuristics, vol. 7, pp. 335–350, 2001.

    Article  MATH  Google Scholar 

  14. D.J. Higham and N.J. Higham, MATLAB Guide, SIAM, Philadelphia, Pennsilvania, USA, 2000.

  15. J.B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms, volume I and II. Springer-Verlag, Berlin, 1996.

  16. E. Johnson, “Mathematical programming,” Chapter cyclic groups, cutting planes and shortest path, Academic press, pp. 185–211, 1973.

  17. O. Kariv and L. Hakimi, “An algorithmic approach to network location problems. ii: The p-medians,” SIAM Journal of Applied Mathematics, vol. 37, no. 3, pp. 539–560, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.E. Kelley, “The cutting-plane method for solving convex programs,” Journal of the SIAM, vol. 8, pp. 703–712, 1960.

    MathSciNet  Google Scholar 

  19. D. Klabjan, “A new subadditive approach to integer programming,” in W. Cook and A.S. Schulz, (eds.), Integer Programming and Combinatorial Optimization, 9th International IPCO Conference, Cambridge, MA, USA, May 27–29, 2002, Proceedings, volume 2337 of Lecture Notes in Computer Science. Springer, 2002.

  20. D. Klabjan, “A practical algorithm for computing a subadditive dual function for set partitioning,” Computational Optimization and Applications, vol. 29, pp. 347–368, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  21. C. Lemaréchal and A. Renaud, “A geometric study of duality gaps, with applications,” Mathematical Programming, Ser. A, vol. 90, pp. 399–427, 2001.

    Article  MATH  Google Scholar 

  22. J.M. Mulvey and H.P. Crowder, “Cluster analysis: An application of lagrangian relaxation,” Management Science, vol. 25, pp. 329–340, 1979.

    MATH  Google Scholar 

  23. D.R. Musicant, “Matlab/cplex mex-files,” 2000. http://www.cs.wisc.edu/∼musicant/data/cplex/.

  24. G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, John Wiley and Sons, 1988.

  25. G. Reinelt, “Tsplib,” 2001. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95.

  26. C. Tadonki, “Using cplex with matlab,” 2003. http://www.omegacomputer.com/staff/tadonki/using_cplex_with_matlab.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Beltran.

Additional information

This work was partially supported by the Fonds National Suisse de la Recherche Scientifique, grant 12-57093.99 and the Spanish government, MCYT subsidy dpi2002-03330.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltran, C., Tadonki, C. & Vial, J.P. Solving the p-Median Problem with a Semi-Lagrangian Relaxation. Comput Optim Applic 35, 239–260 (2006). https://doi.org/10.1007/s10589-006-6513-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-006-6513-6

Keywords

Navigation