[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Streaming traffic classification: a hybrid deep learning and big data approach

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Massive amounts of real-time streaming network data are generated quickly because of the exponential growth of applications. Analyzing patterns in generated flow traffic streaming offers benefits in reducing traffic congestion, enhancing network management, and improving the quality of service management. Processing massive volumes of generated traffic poses more challenges when data traffic encryption is raised. Classifying encrypted network traffic in real-time with deep learning networks has received attention because of their excellent performance. The substantial volume of incoming packets, characterized by high speed and wide variety, puts real-time traffic classification within the domain of big data problems. Classifying traffic with high speed and accuracy is a significant challenge in the era of big data. The real-time nature of traffic intensifies deep learning networks, necessitating a considerable number of parameters, layers, and resources for optimal network training. Until now, various datasets have been employed to evaluate the effectiveness of previous methods for classifying encrypted traffic. The primary objective has been to enhance accuracy, precision, and F1-measure. Presently, encrypted traffic classification performance depends on pre-existing datasets. The learning and testing phases are done offline, and more research is needed to investigate the feasibility of these methods in real-world scenarios. This paper examines the possibility of a tradeoff between evaluating the model’s effectiveness, execution time, and utilization of processing resources when processing stream-based input data for traffic classification. We aim to explore the feasibility of establishing a tradeoff between these factors and determining optimal parameter settings. This paper used the ISCX VPN-Non VPN 2016 public dataset to evaluate the proposed method. All packets from the dataset were streamed continuously through Apache Kafka to the classification framework. Numerous experiments have been designed to demonstrate the efficacy of the proposed method. The experimental results show that the proposed method outperforms the baseline methods by 11% in the F1-measure when the number of workers is two and by 25% when the number of workers is equal to 32.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data used in the experiments can be accessed from https://www.unb.ca/cic/datasets/vpn.html.

References

  1. Aouedi, O., Piamrat, K., Parrein, B.: Intelligent traffic management in next-generation networks. Future Internet 14(2), 44 (2022)

    Google Scholar 

  2. Azab, A., Khasawneh, M., Alrabaee, S., Choo, K.-K.R., Sarsour, M.: Network traffic classification: techniques, datasets, and challenges. Digit. Commun. Netw. (2022). https://doi.org/10.1016/j.dcan.2022.09.009

    Article  Google Scholar 

  3. Akbari, I., Salahuddin, M.A., Ven, L., Limam, N., Boutaba, R., Mathieu, B., Moteau, S., Tuffin, S.: A look behind the curtain: traffic classification in an increasingly encrypted web. Proc. ACM Meas. Anal. Comput. Syst. 5(1), 1–26 (2021)

    Google Scholar 

  4. Cheng, J., Wu, Y., Yuepeng, E., You, J., Li, T., Li, H., Ge, J.: MATEC: a lightweight neural network for online encrypted traffic classification. Comput. Netw. 199, 108472 (2021)

    Google Scholar 

  5. Abbasi, M., Shahraki, A., Taherkordi, A.: Deep learning for network traffic monitoring and analysis (NTMA): a survey. Comput. Commun. 170, 19–41 (2021)

    Google Scholar 

  6. Dong, T., Li, S., Qiu, H., Lu, J.: An interpretable federated learning-based network intrusion detection framework. arXiv Preprint. https://arxiv.org/abs/2201.03134 (2022)

  7. Bochie, K., Gilbert, M.S., Gantert, L., Barbosa, M.S., Medeiros, D.S., Campista, M.E.M.: A survey on deep learning for challenged networks: applications and trends. J. Netw. Comput. Appl. 194, 103213 (2021)

    Google Scholar 

  8. Papadogiannaki, E., Ioannidis, S.: A survey on encrypted network traffic analysis applications, techniques, and countermeasures. ACM Comput. Surv. (CSUR) 54(6), 1–35 (2021)

    Google Scholar 

  9. Cheng, J., He, R., Yuepeng, E., Wu, Y., You, J., Li, T.: Real-time encrypted traffic classification via lightweight neural networks. In: GLOBECOM 2020–2020 IEEE Global Communications Conference, pp. 1–6. IEEE (2020)

  10. Audah, M.F., Chin, T.S., Zulfadzli, Y., Lee, C.K., Rizaluddin, K.: Towards efficient and scalable machine learning-based QoS traffic classification in software-defined network. In: Mobile Web and Intelligent Information Systems: 16th International Conference, MobiWIS 2019, Istanbul, Turkey, August 26–28, 2019, Proceedings 16. Springer (2019)

  11. Niyaz, Q., Sun, W., Javaid, A.Y.: A deep learning based DDoS detection system in software-defined networking (SDN). arXiv Preprint. https://arxiv.org/abs/1611.07400 (2016)

  12. Aceto, G., Ciuonzo, D., Montieri, A., Persico, V., Pescapé, A.: Know your big data trade-offs when classifying encrypted mobile traffic with deep learning. In: 2019 Network Traffic Measurement and Analysis Conference (TMA), pp. 121–128. IEEE (2019)

  13. Zhou, B., Li, J., Ji, Y., Guizani, M.: Online internet traffic monitoring and DDoS attack detection using Big Data frameworks. In: 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 1507–1512. IEEE (2018)

  14. Zhou, B., Li, J., Wang, X., Gu, Y., Xu, L., Hu, Y., Zhu, L.: Online internet traffic monitoring system using spark streaming. Big Data Min. Anal. 1(1), 47–56 (2018)

    Google Scholar 

  15. Hayes, M., Ng, B., Pekar, A., Seah, W.K.: Scalable architecture for SDN traffic classification. IEEE Syst. J. 12(4), 3203–3214 (2017)

    Google Scholar 

  16. D’Alconzo, A., Drago, I., Morichetta, A., Mellia, M., Casas, P.: A survey on big data for network traffic monitoring and analysis. IEEE Trans. Netw. Serv. Manag. 16(3), 800–813 (2019)

    Google Scholar 

  17. Aceto, G., Ciuonzo, D., Montieri, A., Pescapé, A.: DISTILLER: encrypted traffic classification via multimodal multitask deep learning. J. Netw. Comput. Appl. 183, 102985 (2021)

    Google Scholar 

  18. Disabato, S., Roveri, M., Alippi, C.: Distributed deep convolutional neural networks for the internet-of-things. IEEE Trans. Comput. 70(8), 1239–1252 (2021)

    MathSciNet  Google Scholar 

  19. Yun, X., Wang, Y., Zhang, Y., Zhao, C., Zhao, Z.: Encrypted TLS traffic classification on cloud platforms. IEEE/ACM Trans. Netw. 31(1), 164–177 (2022)

    Google Scholar 

  20. Sun, P., Guo, Z., Lan, J., Li, J., Hu, Y., Baker, T.: ScaleDRL: a scalable deep reinforcement learning approach for traffic engineering in SDN with pinning control. Comput. Netw. 190, 107891 (2021)

    Google Scholar 

  21. Viegas, E., Santin, A., Bessani, A., Neves, N.: BigFlow: real-time and reliable anomaly-based intrusion detection for high-speed networks. Future Gener. Comput. Syst. 93, 473–485 (2019)

    Google Scholar 

  22. Langer, M., He, Z., Rahayu, W., Xue, Y.: Distributed training of deep learning models: a taxonomic perspective. IEEE Trans. Parallel Distrib. Syst. 31(12), 2802–2818 (2020)

    Google Scholar 

  23. Agrawal, S., Sarkar, S., Aouedi, O., Yenduri, G., Piamrat, K., Alazab, M., Bhattacharya, S., Maddikunta, P.K., Gadekallu, T.R.: Federated learning for intrusion detection system: concepts, challenges and future directions. Comput. Commun. (2022). https://doi.org/10.1016/j.comcom.2022.09.012

    Article  Google Scholar 

  24. Zhong, Z., Bao, W., Wang, J., Zhu, X., Zhang, X.: FLEE: a hierarchical federated learning framework for distributed deep neural network over cloud, edge, and end device. ACM Trans. Intell. Syst. Technol. 13(5), 1–24 (2022)

    Google Scholar 

  25. Diro, A.A., Chilamkurti, N.: Distributed attack detection scheme using deep learning approach for Internet of Things. Future Gener. Comput. Syst. 82, 761–768 (2018)

    Google Scholar 

  26. Zhu, M.-Y., Chen, Z., Chen, K.-F., Lv, N., Zhong, Y.: Attention-based federated incremental learning for traffic classification in the Internet of Things. Comput. Commun. 185, 168–175 (2022)

    Google Scholar 

  27. Mun, H., Lee, Y.: Internet traffic classification with federated learning. Electronics 10(1), 27 (2020)

    Google Scholar 

  28. Khan, N., Yaqoob, I., Hashem, I.A., Inayat, Z., Mahmoud Ali, W.K., Alam, M., Shiraz, M., Gani, A.: Big data: survey, technologies, opportunities, and challenges. Sci. World J. (2014). https://doi.org/10.1155/2014/712826

    Article  Google Scholar 

  29. Emani, C.K., Cullot, N., Nicolle, C.: Understandable big data: a survey. Comput. Sci. Rev. 17, 70–81 (2015)

    MathSciNet  Google Scholar 

  30. Gupta, A., Birkner, R., Canini, M., Feamster, N., Mac-Stoker, C., Willinger, W.: Network monitoring as a streaming analytics problem. In: Proceedings of the 15th ACM Workshop on Hot Topics in Networks, pp. 106–112 (2016)

  31. Xu, C., Xia, R., Xiao, Y., Li, Y., Shi, G., Chen, K.-C.: Federated traffic synthesizing and classification using generative adversarial networks. In: ICC 2021-IEEE International Conference on Communications, pp. 1–6. IEEE (2021)

  32. Li, Y., Wang, Y., Liu, Q., Bi, C., Jiang, X., Sun, S.: Incremental semi-supervised learning on streaming data. Pattern Recogn. 88, 383–396 (2019)

    Google Scholar 

  33. Destounis, A., Paschos, G.S., Koutsopoulos, I.: Streaming big data meets backpressure in distributed network computation. In: IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, pp. 1–9. IEEE (2016)

  34. Ben-Nun, T., Hoefler, T.: Demystifying parallel and distributed deep learning: an in-depth concurrency analysis. ACM Comput. Surv. 52(4), 1–43 (2019)

    Google Scholar 

  35. Tang, Z., Hu, H., Xu, C.: A federated learning method for network intrusion detection. Concurr. Comput.: Pract. Exp. 34(10), e6812 (2022)

    Google Scholar 

  36. Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y.: A survey on federated learning. Knowl. Based Syst. 216, 106775 (2021)

    Google Scholar 

  37. Karimi, A.M., Niyaz, Q., Sun, W., Javaid, A.Y., Devabhaktuni, V.K.: Distributed network traffic feature extraction for a real-time IDS. In: 2016 IEEE International Conference on Electro Information Technology (EIT), pp. 0522–0526. IEEE (2016)

  38. Ocampo Palacio, A.F., Wauters, T., Volckaert, B., De Turck, F.: Scalable distributed traffic monitoring for enterprise networks with Spark Streaming. In: ECCWS2018, the 17th European Conference on Cyber Warfare and Security, pp. 563–569 (2018)

  39. D’Alessandro, V., Park, B., Romano, L., Fetzer, C.: Scalable network traffic classification using distributed support vector machines. In: 2015 IEEE 8th International Conference on Cloud Computing, pp. 1008–1012. IEEE (2015)

  40. Yuan, Z., Wang, C.: An improved network traffic classification algorithm based on Hadoop decision tree. In: 2016 IEEE International Conference of Online Analysis and Computing Science (ICOACS), pp. 53–56. IEEE (2016)

  41. Li, X., Wang, Y., Ke, W., Feng, H.: Real-time network traffic classification based on CDH pattern matching. In: 2018 14th International Conference on Computational Intelligence and Security (CIS), pp. 130–134. IEEE (2018)

  42. Bovenzi, G., Aceto, G., Ciuonzo, D., Persico, V., Pescape, A.: A big data-enabled hierarchical framework for traffic classification. IEEE Trans. Netw. Sci. Eng. 7(4), 2608–2619 (2020)

    Google Scholar 

  43. Alsheikh, M.A., Niyato, D., Lin, S., Tan, H.-P., Han, Z.: Mobile big data analytics using deep learning and apache spark. IEEE Netw. 30(3), 22–29 (2016)

    Google Scholar 

  44. Das, S.: FGAN: federated generative adversarial networks for anomaly detection in network traffic. arXiv Preprint. https://arxiv.org/abs/2203.11106 (2022)

  45. Bakopoulou, E., Tillman, B., Markopoulou, A.: FedPacket: a federated learning approach to mobile packet classification. IEEE Trans. Mob. Comput. 21(10), 3609–3628 (2021)

    Google Scholar 

  46. Pei, J., Zhong, K., Jan, M.A., Li, J.: Personalized federated learning framework for network traffic anomaly detection. Comput. Netw. 209, 108906 (2022)

    Google Scholar 

  47. Li, B., Wu, Y., Song, J., Lu, R., Li, T., Zhao, L.: DeepFed: federated deep learning for intrusion detection in industrial cyber–physical systems. IEEE Trans. Industr. Inform. 17(8), 5615–5624 (2020)

    Google Scholar 

  48. Chen, Z., Lv, N., Liu, P., Fang, Y., Chen, K., Pan, W.: Intrusion detection for wireless edge networks based on federated learning. IEEE Access 8, 217463–217472 (2020)

    Google Scholar 

  49. Liu, Y., Garg, S., Nie, J., Zhang, Y., Xiong, Z., Kang, J., Hossain, M.S.: Deep anomaly detection for time-series data in industrial IoT: a communication-efficient on-device federated learning approach. IEEE Internet Things J. 8(8), 6348–6358 (2020)

    Google Scholar 

  50. Zhao, Y., Chen, J., Wu, D., Teng, J., Yu, S.: Multi-task network anomaly detection using federated learning. In: Proceedings of the 10th International Symposium on Information and Communication Technology, pp. 273–279 (2019)

  51. Zhao, R., Yin, Y., Shi, Y., Xue, Z.: Intelligent intrusion detection based on federated learning aided long short-term memory. Phys. Commun. 42, 101157 (2020)

    Google Scholar 

  52. Mothukuri, V., Khare, P., Parizi, R.M., Pouriyeh, S., Dehghantanha, A., Srivastava, G.: Federated-learning-based anomaly detection for IoT security attacks. IEEE Internet Things J. 9(4), 2545–2554 (2021)

    Google Scholar 

  53. Guo, Y., Wang, D.: FEAT: a federated approach for privacy-preserving network traffic classification in heterogeneous environments. IEEE Internet Things J. 10(2), 1274–1285 (2022)

    Google Scholar 

  54. Jin, Z., Liang, Z., He, M., Peng, Y., Xue, H., Wang, Y.: A federated semi-supervised learning approach for network traffic classification. Int. J. Netw. Manag. 33(3), e2222 (2023)

    Google Scholar 

  55. McMahan, B., Moore, E., Ramage, D., Hampson, S., Aguera y Arcas, B.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

  56. Liu, X., You, J., Wu, Y., Li, T., Li, L., Zhang, Z., Ge, J.: Attention-based bidirectional GRU networks for efficient HTTPS traffic classification. Inf. Sci. 541, 297–315 (2020)

    Google Scholar 

  57. Qi, Y., Hossain, M.S., Nie, J., Li, X.: Privacy-preserving blockchain-based federated learning for traffic flow prediction. Future Gener. Comput. Syst. 117, 328–337 (2021)

    Google Scholar 

  58. Preuveneers, D., Rimmer, V., Tsingenopoulos, I., Spooren, J., Joosen, W., Ilie-Zudor, E.: Chained anomaly detection models for federated learning: an intrusion detection case study. Appl. Sci. 8(12), 2663 (2018)

    Google Scholar 

  59. Akbari, I., Tahoun, E.: PrivPkt: privacy preserving collaborative encrypted traffic classification. (2019). http://www.informationweek.com/news/201202317. Accessed 29 Jun 2021

  60. Ferdowsi, A., Saad, W.: Generative adversarial networks for distributed intrusion detection in the Internet of Things. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2019)

  61. Rey, V., Sánchez Sánchez, P.M., Celdrán, A.H., Bovet, G.: Federated learning for malware detection in IoT devices. Comput. Netw. 204, 108693 (2022)

    Google Scholar 

  62. Rahman, S.A., Tout, H., Talhi, C., Mourad, A.: Internet of things intrusion detection: centralized, on-device, or federated learning? IEEE Netw. 34(6), 310–317 (2020)

    Google Scholar 

  63. Li, W., Meng, W., Au, M.H.: Enhancing collaborative intrusion detection via disagreement-based semi-supervised learning in IoT environments. J. Netw. Comput. Appl. 161, 102631 (2020)

    Google Scholar 

  64. Zhang, C., Patras, P., Haddadi, H.: Deep learning in mobile and wireless networking: a survey. IEEE Commun. Surv. Tutor. 21(3), 2224–2287 (2019)

    Google Scholar 

  65. Li, J., Lyu, L., Liu, X., Zhang, X., Lyu, X.: FLEAM: a federated learning empowered architecture to mitigate DDoS in industrial IoT. IEEE Trans. Industr. Inform. 18(6), 4059–4068 (2021)

    Google Scholar 

  66. Xiao, Y., Xia, R., Li, Y., Shi, G., Nguyen, D.N., Hoang, D.T., Niyato, D., Krunz, M.: Distributed traffic synthesis and classification in edge networks: a federated self-supervised learning approach. IEEE Trans. Mob. Comput. (2023). https://doi.org/10.1109/TMC.2023.3240821

    Article  Google Scholar 

  67. Jin, D., Chen, S., He, H., Jiang, X., Cheng, S., Yang, J.: Federated incremental learning based evolvable intrusion detection system for zero-day attacks. IEEE Netw. 37(1), 125–132 (2023)

    Google Scholar 

  68. Garcia, N., Alcaniz, T., González-Vidal, A., Bernabe, J.B., Rivera, D., Skarmeta, A.: Distributed real-time SlowDoS attacks detection over encrypted traffic using artificial intelligence. J. Netw. Comput. Appl. 173, 102871 (2021)

    Google Scholar 

  69. Nguyen, T.G., Phan, T.V., Nguyen, B.T., So-In, C., Baig, Z.A., Sanguanpong, S.: Search: a collaborative and intelligent NIDS architecture for SDN-based cloud IoT networks. IEEE Access 7, 107678–107694 (2019)

    Google Scholar 

  70. Zhou, B., Li, J., Wu, J., Guo, S., Gu, Y., Li, Z.: Machine-learning-based online distributed denial-of-service attack detection using spark streaming. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2018)

  71. Zolotukhin, M., Hämäläinen, T., Kokkonen, T., Siltanen, J.: Increasing web service availability by detecting application-layer DDoS attacks in encrypted traffic. In: 2016 23rd International Conference on Telecommunications (ICT), pp. 1–6. IEEE (2016)

  72. Dinh, P.T., Park, M.: BDF-SDN: a big data framework for DDoS attack detection in large-scale SDN-based cloud. In: 2021 IEEE Conference on Dependable and Secure Computing (DSC), pp. 1–8. IEEE (2021)

  73. da Silva, A.S., Araujo Wickboldt, J., Zambenedetti Granville, L., Schaeffer-Filho, A.: ATLANTIC: a framework for anomaly traffic detection, classification, and mitigation in SDN. In: NOMS 2016–2016 IEEE/IFIP Network Operations and Management Symposium, pp. 27–35. IEEE (2016)

  74. Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep learning approach for network intrusion detection in software defined networking. In: 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 258–263. IEEE (2016)

  75. Isah, H., Abughofa, T., Mahfuz, S., Ajerla, D., Zulkernine, F., Khan, S.: A survey of distributed data stream processing frameworks. IEEE Access 7, 154300–154316 (2019)

    Google Scholar 

  76. Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I.: Discretized streams: an efficient and {Fault-Tolerant} model for stream processing on large clusters. In: 4th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 12) (2012)

  77. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., et al.: {TensorFlow}: a system for {Large-Scale} machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283 (2016)

  78. Dai, J.J., Wang, Y., Qiu, X., Ding, D., Zhang, Y., Wang, Y., Jia, X., et al.: BigDL: a distributed deep learning framework for big data. In: Proceedings of the ACM Symposium on Cloud Computing, pp. 50–60 (2019)

  79. Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J.: 1D convolutional neural networks and applications: a survey. Mech. Syst. Signal Process. 151, 107398 (2021)

    Google Scholar 

  80. Dong, S., Wang, P., Abbas, K.: A survey on deep learning and its applications. Comput. Sci. Rev. 40, 100379 (2021)

    MathSciNet  Google Scholar 

  81. Shiri, F.M., Perumal, T., Mustapha, N., Mohamed, R.: A comprehensive overview and comparative analysis on deep learning models: CNN, RNN, LSTM, GRU. arXiv Preprint. https://arxiv.org/abs/2305.17473 (2023)

  82. Hatcher, W.G., Yu, W.: A survey of deep learning: platforms, applications and emerging research trends. IEEE Access 6, 24411–24432 (2018)

    Google Scholar 

  83. Alom, Md.Z., Taha, T.M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, MstS., Hasan, M., Van Essen, B.C., Awwal, A.A.S., Asari, V.K.: A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3), 292 (2019)

    Google Scholar 

  84. Liu, X., Wang, Y., Wang, X., Xu, H., Li, C., Xin, X.: Bi-directional gated recurrent unit neural network based nonlinear equalizer for coherent optical communication system. Opt. Express 29(4), 5923–5933 (2021)

    Google Scholar 

  85. Chhabra, P., Goyal, S.: A thorough review on deep learning neural network. In: 2023 International Conference on Artificial Intelligence and Smart Communication (AISC), pp. 220–226. IEEE (2023)

  86. Li, L., Yang, L., Zeng, Y.: Improving sentiment classification of restaurant reviews with attention-based bi-GRU neural network. Symmetry 13(8), 1517 (2021)

    Google Scholar 

  87. D’Angelo, G., Palmieri, F.: Network traffic classification using deep convolutional recurrent autoencoder neural networks for spatial–temporal features extraction. J. Netw. Comput. Appl. 173, 102890 (2021)

    Google Scholar 

  88. Bu, Z., Zhou, B., Cheng, P., Zhang, K., Ling, Z.-H.: Encrypted network traffic classification using deep and parallel network-in-network models. IEEE Access 8, 132950–132959 (2020)

    Google Scholar 

  89. Hu, X., Gu, C., Chen, Y., Wei, F.: CBD: a deep-learning-based scheme for encrypted traffic classification with a general pre-training method. Sensors 21(24), 8231 (2021)

    Google Scholar 

  90. Rezaei, S., Liu, X.: Deep learning for encrypted traffic classification: an overview. IEEE Commun. Mag. 57(5), 76–81 (2019)

    Google Scholar 

  91. Hu, F., Zhang, S., Lin, X., Wu, L., Liao, N., Song, Y.: Network traffic classification model based on attention mechanism and spatiotemporal features. EURASIP J. Inf. Secur. 2023(1), 6 (2023)

    Google Scholar 

  92. Shen, M., Liu, Y., Zhu, L., Xu, K., Du, X., Guizani, N.: Optimizing feature selection for efficient encrypted traffic classification: a systematic approach. IEEE Netw. 34(4), 20–27 (2020)

    Google Scholar 

  93. Draper-Gil, G., Lashkari, A.H., Mamun, M.S.I., Ghorbani, A.A.: Characterization of encrypted and VPN traffic using time-related. In: Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP), pp. 407–414 (2016)

  94. Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y.: Malware traffic classification using convolutional neural network for representation learning. In: 2017 International Conference on Information Networking (ICOIN), pp. 712–717. IEEE (2017)

  95. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Progr. Artif. Intell. 5(4), 221–232 (2016)

    Google Scholar 

  96. Gupta, S., Zhang, W., Wang, F.: Model accuracy and runtime tradeoff in distributed deep learning: a systematic study. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 171–180. IEEE (2016)

  97. Zhang, Y., Mcquillan, F., Jayaram, N., Kak, N., Khanna, E., Kislal, O., Valdano, D., Kumar, A.: Distributed deep learning on data systems: a comparative analysis of approaches. In: Proceedings of the VLDB Endowment, vol. 14, no. 10 (2021)

  98. Sasaki, Y.: The truth of the F-measure. Teach Tutor Mater 1(5), 1–5 (2007)

    Google Scholar 

  99. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.: On large-batch training for deep learning: generalization gap and sharp minima. arXiv Preprint. https://arxiv.org/abs/1609.04836 (2016)

  100. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., He, K.: Accurate, large minibatch SGD: training ImageNet in 1 hour. arXiv Preprint. https://arxiv.org/abs/1706.02677 (2017)

  101. Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C., Chayes, J., Sagun, L., Zecchina, R.: Entropy-SGD: biasing gradient descent into wide valleys. J. Stat. Mech.: Theory Exp. 2019(12), 124018 (2019)

    MathSciNet  Google Scholar 

  102. Kaddour, J., Liu, L., Silva, R., Kusner, M.J.: When do flat minima optimizers work? Adv. Neural. Inf. Process. Syst. 35, 16577–16595 (2022)

    Google Scholar 

  103. You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., Song, X., Demmel, J., Keutzer, K., Hsieh, C.J.: Large batch optimization for deep learning: training BERT in 76 minutes. arXiv Preprint. https://arxiv.org/abs/1904.00962 (2019)

  104. Hegde, V., Usmani, S.: Parallel and distributed deep learning, 31, pp. 1–8 (2016)

  105. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. J. Big Data 6(1), 1–54 (2019)

    Google Scholar 

  106. He, X., Xue, F., Ren, X., You, Y.: Large-scale deep learning optimizations: a comprehensive survey. arXiv Preprint. https://arxiv.org/abs/2111.00856 (2021)

  107. Menghani, G.: Efficient deep learning: a survey on making deep learning models smaller, faster, and better. ACM Comput. Surv. 55(12), 1–37 (2023)

    Google Scholar 

  108. Végh, J.: Which scaling rule applies to large artificial neural networks: technological limitations for biology-imitating computing. Neural Comput. Appl. 33(24), 16847–16864 (2021)

    Google Scholar 

  109. Shi, Z., Luktarhan, N., Song, Y., Tian, G.: BFCN: a novel classification method of encrypted traffic based on BERT and CNN. Electronics 12(3), 516 (2023)

    Google Scholar 

  110. Wang, P., Ye, F., Chen, X., Qian, Y.: DataNet: deep learning based encrypted network traffic classification in SDN home gateway. IEEE Access 6, 55380–55391 (2018)

    Google Scholar 

  111. Hu, X., Gu, C., Wei, F.: CLD-Net: a network combining CNN and LSTM for internet encrypted traffic classification. Secur. Commun. Netw. 2021, 1–15 (2021)

    Google Scholar 

  112. Lu, B., Luktarhan, N., Ding, C., Zhang, W.: ICLSTM: encrypted traffic service identification based on inception-LSTM neural network. Symmetry 13(6), 1080 (2021)

    Google Scholar 

  113. Zeng, Y., Gu, H., Wei, W., Guo, Y.: Deep-Full-Range: a deep learning based network encrypted traffic classification and intrusion detection framework. IEEE Access 7, 45182–45190 (2019)

    Google Scholar 

  114. Li, J., Louri, A., Karanth, A., Bunescu, R.: CSCNN: algorithm-hardware co-design for CNN accelerators using centrosymmetric filters. In: 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pp. 612–625. IEEE (2021)

  115. Lotfollahi, M., Siavoshani, M.J., Hossein Zade, R.S., Saberian, M.: Deep packet: a novel approach for encrypted traffic classification using deep learning. Soft Comput. 24(3), 1999–2012 (2020)

    Google Scholar 

  116. Végh, J.: How Amdahl’s Law limits the performance of large artificial neural networks. Brain Inform. 6(1), 1–11 (2019)

    Google Scholar 

  117. Jena, B., Nayak, G.K., Saxena, S.: High-performance computing and its requirements in deep learning. In: High-Performance Medical Image Processing, pp. 255–288. Apple Academic Press (2022)

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers, associate editor and editor-in-chief for their valuable feedback on the paper.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. MS wrote the first draft of the manuscript, and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Farshad Khunjush.

Ethics declarations

Competing interests

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Ethical approval

This article does not contain any studies with human or animal participants performed by authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seydali, M., Khunjush, F. & Dogani, J. Streaming traffic classification: a hybrid deep learning and big data approach. Cluster Comput 27, 5165–5193 (2024). https://doi.org/10.1007/s10586-023-04234-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04234-0

Keywords

Navigation