[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A hybrid approach for fault-tolerance aware load balancing in fog computing

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Fog computing has grown in popularity in recent years because to its potential to deliver real-time processing, low latency, and reduce network congestion. However, the implementation of Internet of Things (IoT) enabled smart devices in environments using fog computing may lead to resource limitations and higher computational demands. Load balancing and fault tolerance strategies are necessary to tackle these difficulties for optimal resource usage and system availability. In order to accomplish fault tolerance aware load balancing in fog computing, a hybrid meta-heuristic approach that combines the Modified Harris-Hawks Optimization (MHHO) and Ant Colony Optimization (ACO) is proposed through this paper. The MHHO algorithm is utilized for load balancing, whereas the ACO algorithm is used for fault tolerance. By employing the proposed technique, the load on fog nodes is balanced, the makespan time is minimized, energy consumption and execution costs are minimized, and fault tolerance in fog computing environments is ensured. It is evaluated using a simulation framework built on the iFogSim toolkit. In terms of load balancing, fault tolerance, and other factors, the results of the experiments show that the suggested hybrid algorithm performs better than earlier state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availibility

Data availability is not applicable to this article.

References

  1. Ningning, S., Chao, G., Xingshuo, A., Qiang, Z.: Fog computing dynamic load balancing mechanism based on graph repartitioning. China Commun. 13(3), 156–164 (2016)

    Article  Google Scholar 

  2. Rathore, N.K., Khan, Y., Kumar, S., Singh, P., Varma, S.: An evolutionary algorithmic framework cloud based evidence collection architecture. Multimed. Tools Appl. 3, 1–29 (2023)

    Google Scholar 

  3. Verma, M., Bhardwaj, N., Yadav, A.K.: Real time efficient scheduling algorithm for load balancing in fog computing environment. Int. J. Inf. Technol. Comput. Sci 8(4), 1–10 (2016)

    Google Scholar 

  4. Khattar, N., Sidhu, J., Singh, J.: Toward energy-efficient cloud computing: a survey of dynamic power management and heuristics-based optimization techniques. J. Supercomput. 75, 4750–4810 (2019)

    Article  Google Scholar 

  5. Liu, L., Chang, Z., Guo, X., Mao, S., Ristaniemi, T.: Multiobjective optimization for computation offloading in fog computing. IEEE Internet Things J. 5(1), 283–294 (2017)

    Article  Google Scholar 

  6. Wan, J., Chen, B., Wang, S., Xia, M., Li, D., Liu, C.: Fog computing for energy-aware load balancing and scheduling in smart factory. IEEE Trans. Ind. Inform. 14(10), 4548–4556 (2018)

    Article  Google Scholar 

  7. Saini, P., Ahuja, R.: A review for predicting the diabetes mellitus using different techniques and methods. In: Proceedings of International Conference on Data Science and Applications: ICDSA 2021, Volume 1, pp. 425–440 (2022). Springer

  8. Neto, E.C.P., Callou, G., Aires, F.: An algorithm to optimise the load distribution of fog environments. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1292–1297 (2017). IEEE

  9. Gupta, K., Gupta, D., Kukreja, V., Kaushik, V.: Fog computing and its security challenges. In: Machine Learning for Edge Computing, pp. 1–24. CRC Press, Boca Raton (2022)

  10. Rathore, N., Chana, I.: Variable threshold-based hierarchical load balancing technique in grid. Eng. Comput. 31(3), 597–615 (2015)

    Article  Google Scholar 

  11. Singh, S.P., Nayyar, A., Kaur, H., Singla, A.: Dynamic task scheduling using balanced vm allocation policy for fog computing platforms. Scalable Comput. 20(2), 433–456 (2019)

    Google Scholar 

  12. Rathore, N., Chana, I.: Load balancing and job migration techniques in grid: a survey of recent trends. Wirel. Personal Commun. 79(3), 2089–2125 (2014)

    Article  Google Scholar 

  13. Rathore, N.K., Chana, I.: A cogitative analysis of load balancing technique with job migration in grid environment. In: World Congress on Information and Communication Technology (WICT), Mumbai, In: IEEE Proceedings Paper, pp. 77–82 (2011)

  14. Mounnan, O., El Mouatasim, A., Manad, O., Hidar, T., Abou El Kalam, A., Idboufker, N.: Privacy-aware and authentication based on blockchain with for iot enabled fog computing. In: 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC), pp. 347–352 (2020). IEEE

  15. Hussein, M.K., Mousa, M.H.: Efficient task offloading for iot-based applications in fog computing using ant colony optimization. IEEE Access 8, 37191–37201 (2020)

    Article  Google Scholar 

  16. Yakubu, I.Z., Murali, M.: An efficient meta-heuristic resource allocation with load balancing in iot-fog-cloud computing environment. J. Ambient Intell. Hum. Comput. 12, 1 (2023)

    Google Scholar 

  17. Haris, M., Zubair, S.: Mantaray modified multi-objective harris hawk optimization algorithm expedites optimal load balancing in cloud computing. J. King Saud Univ.-Comput. Inform. Sci. 34(10), 9696–9709 (2022)

    Google Scholar 

  18. Nishant, K., Sharma, P., Krishna, V., Gupta, C., Singh, K.P., Nitin, Rastogi, R.: Load balancing of nodes in cloud using ant colony optimization. In: 2012 UKSim 14th International Conference on Computer Modelling and Simulation, pp. 3–8 (2012). https://doi.org/10.1109/UKSim.2012.11

  19. Sim, K.M., Sun, W.H.: Ant colony optimization for routing and load-balancing: survey and new directions. IEEE Trans. Syst. Man Cybern. Part A 33(5), 560–572 (2003). https://doi.org/10.1109/TSMCA.2003.817391

    Article  MathSciNet  Google Scholar 

  20. Kumar, A., Kumar, R., Sharma, A.: Energy aware resource allocation for clouds using two level ant colony optimization. Comput. Inform. 1, 37 (2018)

    Google Scholar 

  21. Kishor, A., Chakarbarty, C.: Task offloading in fog computing for using smart ant colony optimization. Wirel. Pers. Commun. 22, 1 (2021)

    Google Scholar 

  22. Kaur, M., Aron, R.: Focalb: Fog computing architecture of load balancing for scientific workflow applications. J. Grid Comput. 19(4), 40 (2021)

    Article  Google Scholar 

  23. Fan, Q., Ansari, N.: Towards workload balancing in fog computing empowered iot. IEEE Trans. Netw. Sci. Eng. 7(1), 253–262 (2018)

    Article  MathSciNet  Google Scholar 

  24. Baek, J.-y., Kaddoum, G., Garg, S., Kaur, K., Gravel, V.: Managing fog networks using reinforcement learning based load balancing algorithm. In: 2019 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–7 (2019). IEEE

  25. Xu, G., Pang, J., Fu, X.: A load balancing model based on cloud partitioning for the public cloud. Tsinghua Sci. Technol. 18(1), 34–39 (2013)

    Article  Google Scholar 

  26. Rathore, N., Chana, I.: A sender initiate based hierarchical load balancing technique for grid using variable threshold value. In: 2013 IEEE International Conference on Signal Processing, Computing and Control (ISPCC), pp. 1–6 (2013). IEEE

  27. Rathore, N., Chana, I.: Report on hierarchal load balancing technique in grid environment. i-manager’s. J. Inform. Technol. 2(4), 21 (2013)

    Google Scholar 

  28. Islam, M.S.U., Kumar, A.: A context-aware priority tuple scheduling for fog computing paradigm. Trans. Emerg. Telecommun. Technol. 89, 4647 (2022)

    Article  Google Scholar 

  29. Chandak, A., Ray, N.K.: A review of load balancing in fog computing. In: 2019 International Conference on Information Technology (ICIT), pp. 460–465 (2019). IEEE

  30. Kaur, N., Kumar, A., Kumar, R.: Promo: proactive mobility-support model for task scheduling in fog computing. Int. J. Comput. Appl. 44(11), 1092–1101 (2022)

    Google Scholar 

  31. Alarifi, A., Abdelsamie, F., Amoon, M.: A fault-tolerant aware scheduling method for fog-cloud environments. PLoS ONE 14(10), 0223902 (2019)

    Article  Google Scholar 

  32. Rathore, N.: Performance of hybrid load balancing algorithm in distributed web server system. Wirel. Person. Commun. 101(3), 1233–1246 (2018)

    Article  Google Scholar 

  33. Sharif, A., Nickray, M., Shahidinejad, A.: Fault-tolerant with load balancing scheduling in a fog-based iot application. IET Commun. 14(16), 2646–2657 (2020)

    Article  Google Scholar 

  34. Zhang, X., Rane, K.P., Kakaravada, I., Shabaz, M.: Research on vibration monitoring and fault diagnosis of rotating machinery based on internet of things technology. Nonlinear Eng. 10(1), 245–254 (2021)

    Article  Google Scholar 

  35. Singh, A., Moser, L.E., Melliar-Smith, P.: Integrating fault tolerance and load balancing in distributed systems based on Corba. In: European Dependable Computing Conference, pp. 154–166 (2005). Springer

  36. Laxkar, P., Rathore, N.K.: Load balancing algorithm in distributed network. Solid State Technol. 89, 6633–6645 (2020)

    Google Scholar 

  37. Rathore, N.: An enhancement of gridsim architecture with load balancing. PROCEEDINGS BOOK (2021)

  38. Wang, K., Shao, Y., Xie, L., Wu, J., Guo, S.: Adaptive and fault-tolerant data processing in healthcare iot based on fog computing. IEEE Trans. Netw. Sci. Eng. 7(1), 263–273 (2018)

    Article  Google Scholar 

  39. Rathore, N.K.: Efficient hierarchical load balancing technique based on grid. In: 29 Th MP Young Scientist Congress, p. 55 (2014)

  40. Sharif, A., Nickray, M., Shahidinejad, A.: Fault-tolerant with load balancing scheduling in a fog-based iot application. IET Commun. 14(16), 2646–2657 (2020)

    Article  Google Scholar 

  41. Rathore, N.K.: Efficient agent based priority scheduling and loadbalancing using fuzzy logic in grid computing. System 6, 13–23 (2015)

    Google Scholar 

  42. Abdel-Basset, M., Abdel-Fatah, L., Sangaiah, A.K.: Metaheuristic algorithms: A comprehensive review. In: Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, pp. 185–231. Elsevier, Amsterdam (2018)

  43. Cho, K.-M., Tsai, P.-W., Tsai, C.-W., Yang, C.-S.: A hybrid meta-heuristic algorithm for vm scheduling with load balancing in cloud computing. Neural Comput Appl. 26(6), 1297–1309 (2015)

    Article  Google Scholar 

  44. Abdel-Basset, M., El-shahat, D., Elhoseny, M., Song, H.: Energy-aware metaheuristic algorithm for industrial internet of things task scheduling problems in fog computing applications. IEEE Internet Things J. 8(16), 12638–12649 (2020)

    Article  Google Scholar 

  45. Khattak, H.A., Arshad, H., Islam, S., Ahmed, G., Jabbar, S., Sharif, A.M., Khalid, S.: Utilization and load balancing in fog servers for health applications. EURASIP J. Wirel. Commun. Netw. 2019(1), 91 (2019)

    Article  Google Scholar 

  46. Gokul, M., Balamurali, M.: Cloud load balancing using meta-heuristics. In: 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 589–595 (2022). IEEE

  47. Oma, R., Nakamura, S., Duolikun, D., Enokido, T., Takizawa, M.: Fault-tolerant fog computing models in the iot. In: International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 14–25 (2018). Springer

  48. Mohamed, N., Al-Jaroodi, J., Jawhar, I.: Towards fault tolerant fog computing for iot-based smart city applications. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0752–0757 (2019). IEEE

  49. Rajab, H.T., Younis, M.F.: Dynamic fault tolerance aware scheduling for healthcare system on fog computing. Iraqi J. Sci. 89, 308–318 (2021)

    Article  Google Scholar 

  50. Ramzanpoor, Y., Hosseini Shirvani, M., Golsorkhtabaramiri, M.: Multi-objective fault-tolerant optimization algorithm for deployment of iot applications on fog computing infrastructure. Complex Intell. Syst. 8(1), 361–392 (2022)

    Article  Google Scholar 

  51. Singh, S.P.: Effective load balancing strategy using fuzzy golden eagle optimization in fog computing environment. Sustain. Comput. 35, 100766 (2022)

    Google Scholar 

  52. Rathore, N.: Dynamic threshold based load balancing algorithms. Wirel. Person. Commun. 91(1), 151–185 (2016)

    Article  Google Scholar 

  53. Rathore, N., Chana, I.: Job migration with fault tolerance based qos scheduling using hash table functionality in social grid computing. J. Intell. Fuzzy Syst. 27(6), 2821–2833 (2014)

    Article  Google Scholar 

  54. Abuhamdah, A., Al-Shabi, M.: Hybrid load balancing algorithm for fog computing environment. Int. J. Softw. Eng. Comput. Syst. 8(1), 11–21 (2022)

    Article  Google Scholar 

  55. Sumathi, M., Vijayaraj, N., Raja, S.P., Rajkamal, M.: Hho-aco hybridized load balancing technique in cloud computing. Int. J. Inform. Technol. 89, 1–9 (2023)

    Google Scholar 

  56. Annie Poornima Princess, G., Radhamani, A.: A hybrid meta-heuristic for optimal load balancing in cloud computing. J. Grid Comput. 19(2), 21 (2021)

    Article  Google Scholar 

  57. George, S.S., Pramila, R.S.: An efficient load balancing technique using caviar-hho enabled vm migration and replica management in cloud computing. In: Web Intelligence, pp. 1–21. IOS Press

  58. Montazerolghaem, A., Khosravi, M., Rezaee, F., Khayyambashi, M.R.: An optimal workflow scheduling method in cloud-fog computing using three-objective harris-hawks algorithm. In: 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 300–306 (2022). IEEE

  59. Hassan, K., Javaid, N., Zafar, F., Rehman, S., Zahid, M., Rasheed, S.: A cloud fog based framework for efficient resource allocation using firefly algorithm. In: Advances on Broadband and Wireless Computing, Communication and Applications: Proceedings of the 13th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA-2018), pp. 431–443 (2019). Springer

  60. Baburao, D., Pavankumar, T., Prabhu, C.: Load balancing in the fog nodes using particle swarm optimization-based enhanced dynamic resource allocation method. Appl. Nanosci. 13(2), 1–10 (2023)

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

VK: Introduction, Organization, Literature Rivew, Proposed Method, Evaluation. RA: Background, Comparison study with matrics and table, AK: Partial evaluation with review and editing, Result and Discussion with Conclusion. VK, RA, AK read and approved the final manuscript.

Corresponding author

Correspondence to Vijaita Kashyap.

Ethics declarations

Conflict of interest

We confirm that this work is original and has not been published elsewhere, nor is it currently under consideration for publication elsewhere. We have no conflicts of interest to disclose. This article does not contain any studies with animals performed by any of the authors. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, V., Ahuja, R. & Kumar, A. A hybrid approach for fault-tolerance aware load balancing in fog computing. Cluster Comput 27, 5217–5233 (2024). https://doi.org/10.1007/s10586-023-04219-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04219-z

Keywords

Navigation