[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A two-tier multi-objective service placement in container-based fog-cloud computing platforms

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The utilization of cloud computing in Internet of Things (IoT) applications has become widespread. However, it presents challenges for latency-sensitive scenarios due to data transmission to the centralized cloud structure, which leads to increased network traffic and service delays. To address this, fog computing has emerged as an intermediary layer between the cloud and IoT, ensuring low-latency interactions. A pivotal challenge within the fog computing paradigm is the service placement problem, involving assigning services to appropriate nodes, which is recognized as NP-hard. Recognizing the intricate nature of service placement, this study introduces a multi-objective optimization approach tailored for dynamic service placement within container-based fog computing environments. Considering multiple objectives is imperative due to the complex interplay of performance metrics in fog computing scenarios. A two-tier resource management framework based on Kubernetes is proposed to manage these diverse yet interrelated objectives effectively. The framework harnesses the power of the multi-objective, non-dominated sorting genetic algorithm II (NSGA-II) to reconcile conflicting objectives and facilitate optimal service placement decisions. Incorporating multi-objective optimization enables a comprehensive evaluation of service placement solutions, ensuring a balanced trade-off between latency, cost-efficiency, and energy consumption. Empirical evaluations demonstrate that the proposed method improves cost, average latency time, and energy consumption by 8% to 36% compared to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Algorithm 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Amin, F., Majeed, A., Mateen, A., Abbasi, R., Hwang, S.O.: A systematic survey on the recent advancements in the social internet of things. IEEE Access 10, 63867–63884 (2022)

    Google Scholar 

  2. Chander, B., Pal, S., De, D., Buyya, R.: Artificial intelligence-based internet of things for industry 5.0. Artif. intell.-Based Internet Things Syst. (2022). https://doi.org/10.1007/978-3-030-87059-1_1

    Article  Google Scholar 

  3. Bhat, J.R., AlQahtani, S.A., Nekovee, M.: Fintech enablers, use cases, and role of future internet of things. J. King Saud Univ.-Comput. Inf. Sci. 35(1), 87–101 (2023)

    Google Scholar 

  4. Ferrández-Pastor, F.-J., Mora-Pascual, J., Díaz-Lajara, D.: Agricultural traceability model based on iot and blockchain: application in industrial hemp production. J. Ind. Inf. Integr. 29, 100381 (2022)

    Google Scholar 

  5. Nasir, M., Javed, A.R., Tariq, M.A., Asim, M., Baker, T.: Feature engineering and deep learning-based intrusion detection framework for securing edge iot. J. Supercomput. (2022). https://doi.org/10.1007/s11227-021-04250-0

    Article  Google Scholar 

  6. Dogani, J., Khunjush, F., Mahmoudi, M.R., Seydali, M.: Multivariate workload and resource prediction in cloud computing using cnn and gru by attention mechanism. J. Supercomput. 79(3), 3437–3470 (2023)

    Google Scholar 

  7. Dogani, J., Khunjush, F., Seydali, M.: Host load prediction in cloud computing with discrete wavelet transformation (dwt) and bidirectional gated recurrent unit (bigru) network. Comput. Commun. 198, 157–174 (2023)

    Google Scholar 

  8. Prakash, V., Savaglio, C., Garg, L., Bawa, S., Spezzano, G.: Cloud-and edge-based erp systems for industrial internet of things and smart factory. Procedia Comput. Sci. 200, 537–545 (2022)

    Google Scholar 

  9. Lourens, M., Tamizhselvi, A., Goswami, B., Alanya-Beltran, J., Aarif, M., Gangodkar, D.: Database management difficulties in the internet of things. In: 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), pp. 322–326 (2022). IEEE

  10. Firouzi, F., Farahani, B., Marinšek, A.: The convergence and interplay of edge, fog, and cloud in the ai-driven internet of things (iot). Inf. Syst. 107, 101840 (2022)

    Google Scholar 

  11. Balasundaram, A., Routray, S., Prabu, A., Krishnan, P., Malla, P.P., Maiti, M.: Internet of things (iot) based smart healthcare system for efficient diagnostics of health parameters of patients in emergency care. IEEE Internet of Things Journal (2023)

  12. Ismail, A.H., El-Bahnasawy, N.A., Hamed, H.F.: Agcm: active queue management-based green cloud model for mobile edge computing. Wirel. Pers. Commun. 105, 765–785 (2019)

    Google Scholar 

  13. Ketu, S., Mishra, P.K.: Cloud, fog and mist computing in iot: an indication of emerging opportunities. IETE Tech. Rev. 39(3), 713–724 (2022)

    Google Scholar 

  14. Dhingra, S., Madda, R.B., Patan, R., Jiao, P., Barri, K., Alavi, A.H.: Internet of things-based fog and cloud computing technology for smart traffic monitoring. Internet Things 14, 100175 (2021)

    Google Scholar 

  15. Avasalcai, C., Tsigkanos, C., Dustdar, S.: Resource management for latency-sensitive iot applications with satisfiability. IEEE Trans. Serv. Comput. 15(5), 2982–2993 (2021)

    Google Scholar 

  16. Martinez, I., Jarray, A., Hafid, A.S.: Scalable design and dimensioning of fog-computing infrastructure to support latency-sensitive iot applications. IEEE Internet Things J. 7(6), 5504–5520 (2020)

    Google Scholar 

  17. Alli, A.A., Alam, M.M.: The fog cloud of things: a survey on concepts, architecture, standards, tools, and applications. Internet Things 9, 100177 (2020)

    Google Scholar 

  18. Songhorabadi, M., Rahimi, M., MoghadamFarid, A., Kashani, M.H.: Fog computing approaches in iot-enabled smart cities. J. Netw. Comput. Appl. 211, 103557 (2023)

    Google Scholar 

  19. Bolettieri, S., Bruno, R., Mingozzi, E.: Application-aware resource allocation and data management for mec-assisted iot service providers. J. Netw. Comput. Appl. 181, 103020 (2021)

    Google Scholar 

  20. Sonkoly, B., Haja, D., Németh, B., Szalay, M., Czentye, J., Szabó, R., Ullah, R., Kim, B.-S., Toka, L.: Scalable edge cloud platforms for iot services. J. Netw. Comput. Appl. 170, 102785 (2020)

    Google Scholar 

  21. Hajvali, M., Adabi, S., Rezaee, A., Hosseinzadeh, M.: Software architecture for iot-based health-care systems with cloud/fog service model. Clust. Comput. 25(1), 91–118 (2022)

    Google Scholar 

  22. Fersi, G.: Fog computing and internet of things in one building block: a survey and an overview of interacting technologies. Clust. Comput. 24(4), 2757–2787 (2021)

    Google Scholar 

  23. Nehme, A., Jesus, V., Mahbub, K., Abdallah, A.: Securing microservices. IT Prof. 21(1), 42–49 (2019)

    Google Scholar 

  24. Megargel, A., Shankararaman, V., Walker, D.K.: Migrating from monoliths to cloud-based microservices: A banking industry example. In: Software Engineering in the Era of Cloud Computing, pp. 85–108. Springer, ??? (2020)

  25. Truong, H.-L., Klein, P.: Devops contract for assuring execution of iot microservices in the edge. Internet Things 9, 100150 (2020)

    Google Scholar 

  26. Saxena, D., Gupta, I., Kumar, J., Singh, A.K., Wen, X.: A secure and multiobjective virtual machine placement framework for cloud data center. IEEE Syst. J. 16(2), 3163–3174 (2021)

    Google Scholar 

  27. Singh, A.K., Swain, S.R., Saxena, D., Lee, C.-N.: A bio-inspired virtual machine placement toward sustainable cloud resource management. IEEE Syst. J. (2023). https://doi.org/10.1109/JSYST.2023.3248118

    Article  Google Scholar 

  28. Mahmud, R., Toosi, A.N.: Con-pi: a distributed container-based edge and fog computing framework. IEEE Internet Things J. 9(6), 4125–4138 (2021)

    Google Scholar 

  29. Sami, H., Mourad, A., Otrok, H., Bentahar, J.: Demand-driven deep reinforcement learning for scalable fog and service placement. IEEE Tran. Serv. Comput. 15(5), 2671–2684 (2021)

    Google Scholar 

  30. Natesha, B., Guddeti, R.M.R.: Adopting elitism-based genetic algorithm for minimizing multi-objective problems of iot service placement in fog computing environment. J. Netw. Comput. Appl. 178, 102972 (2021)

    Google Scholar 

  31. Guerrero, C., Lera, I., Juiz, C.: Evaluation and efficiency comparison of evolutionary algorithms for service placement optimization in fog architectures. Futur. Gener. Comput. Syst. 97, 131–144 (2019)

    Google Scholar 

  32. Raghavendra, M.S., Chawla, P., Rana, A.: A survey of optimization algorithms for fog computing service placement. In: 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (trends and Future directions)(ICRITO), pp. 259–262 (2020). IEEE

  33. Sriraghavendra, M., Chawla, P., Wu, H., Gill, S.S., Buyya, R.: Dosp: a deadline-aware dynamic service placement algorithm for workflow-oriented iot applications in fog-cloud computing environments. Energy Conserv. Solut. Fog-Edge Comput. Paradig. (2022). https://doi.org/10.1007/978-981-16-3448-2_2

    Article  Google Scholar 

  34. Azimzadeh, M., Rezaee, A., Jassbi, S.J., Esnaashari, M.: Placement of iot services in fog environment based on complex network features: a genetic-based approach. Clust. Comput. 25(5), 3423–3445 (2022)

    Google Scholar 

  35. Tavousi, F., Azizi, S., Ghaderzadeh, A.: A fuzzy approach for optimal placement of iot applications in fog-cloud computing. Clust. Comput. (2022). https://doi.org/10.1007/s10586-021-03406-0

    Article  Google Scholar 

  36. Chen, C., Yu, J., Lu, J., Su, X., Zhang, J., Feng, C., Ji, W.: Service composition and optimal selection of low-carbon cloud manufacturing based on nsga-ii-sa algorithm. Processes 11(2), 340 (2023)

    Google Scholar 

  37. Natesha, B., Guddeti, R.M.R.: Meta-heuristic based hybrid service placement strategies for two-level fog computing architecture. J. Netw. Syst. Manag. 30(3), 47 (2022)

    Google Scholar 

  38. Hu, Y., Huang, T., Yu, Y., An, Y., Cheng, M., Zhou, W., Xian, W.: An energy-aware service placement strategy using hybrid meta-heuristic algorithm in iot environments. Clust. Comput. (2022). https://doi.org/10.1007/s10586-022-03751-8

    Article  Google Scholar 

  39. Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya, R.: Profit-aware application placement for integrated fog-cloud computing environments. J. Parallel Distrib. Comput. 135, 177–190 (2020)

    Google Scholar 

  40. Ayoubi, M., Ramezanpour, M., Khorsand, R.: An autonomous iot service placement methodology in fog computing. Softw.: Prac. Exp. 51(5), 1097–1120 (2021)

    Google Scholar 

  41. Natesha, B., Guddeti, R.M.R.: Adopting elitism-based genetic algorithm for minimizing multi-objective problems of iot service placement in fog computing environment. J. Netw. Comput. Appl. 178, 102972 (2021)

    Google Scholar 

  42. Al-Tarawneh, M.A.: Bi-objective optimization of application placement in fog computing environments. J. Ambient Intel. Humaniz. Comput. 13(1), 445–468 (2022)

    Google Scholar 

  43. Maia, A.M., Ghamri-Doudane, Y., Vieira, D., Castro, M.F.: An improved multi-objective genetic algorithm with heuristic initialization for service placement and load distribution in edge computing. Comput. Netw. 194, 108146 (2021)

    Google Scholar 

  44. Salimian, M., Ghobaei-Arani, M., Shahidinejad, A.: An evolutionary multi-objective optimization technique to deploy the iot services in fog-enabled networks: an autonomous approach. Appl. Artif. Intel. 36(1), 2008149 (2022)

    Google Scholar 

  45. Ghobaei-Arani, M., Shahidinejad, A.: A cost-efficient iot service placement approach using whale optimization algorithm in fog computing environment. Expert Syst. Appl. 200, 117012 (2022)

    Google Scholar 

  46. Liu, C., Wang, J., Zhou, L., Rezaeipanah, A.: Solving the multi-objective problem of iot service placement in fog computing using cuckoo search algorithm. Neural Process. Lett. 54(3), 1823–1854 (2022)

    Google Scholar 

  47. Zhao, D., Zou, Q., Boshkani Zadeh, M.: A qos-aware iot service placement mechanism in fog computing based on open-source development model. J. Grid Comput. 20(2), 12 (2022)

    Google Scholar 

  48. Sarrafzade, N., Entezari-Maleki, R., Sousa, L.: A genetic-based approach for service placement in fog computing. J. Supercomput. 78(8), 10854–10875 (2022)

    Google Scholar 

  49. Zare, M., Sola, Y.E., Hasanpour, H.: Towards distributed and autonomous iot service placement in fog computing using asynchronous advantage actor-critic algorithm. J. King Saud Univ.-Comput. Inf. Sci. 35(1), 368–381 (2023)

    Google Scholar 

  50. Abbes, W., Kechaou, Z., Hussain, A., Qahtani, A.M., Almutiry, O., Dhahri, H., Alimi, A.M.: An enhanced binary particle swarm optimization (e-bpso) algorithm for service placement in hybrid cloud platforms. Neural Comput. Appl. 35(2), 1343–1361 (2023)

    Google Scholar 

  51. Farzin, P., Azizi, S., Shojafar, M., Rana, O., Singhal, M.: Flex: a platform for scalable service placement in multi-fog and multi-cloud environments. In: Proceedings of the 2022 Australasian Computer Science Week, pp. 106–114 (2022)

  52. Canali, C., Lancellotti, R.: Gasp: genetic algorithms for service placement in fog computing systems. Algorithms 12(10), 201 (2019)

    MathSciNet  Google Scholar 

  53. Celesti, A., Mulfari, D., Galletta, A., Fazio, M., Carnevale, L., Villari, M.: A study on container virtualization for guarantee quality of service in cloud-of-things. Futur. Gener. Comput. Syst. 99, 356–364 (2019)

    Google Scholar 

  54. Sayfan, G.: Mastering Kubernetes. Packt Publishing Ltd, Birmingham (2017)

    Google Scholar 

  55. Dogani, J., Khunjush, F., Seydali, M.: K-agrued: a container autoscaling technique for cloud-based web applications in kubernetes using attention-based gru encoder-decoder. J. Grid Comput. 20(4), 40 (2022)

    Google Scholar 

  56. Saxena, D., Singh, A.K.: A proactive autoscaling and energy-efficient vm allocation framework using online multi-resource neural network for cloud data center. Neurocomputing 426, 248–264 (2021)

    Google Scholar 

  57. Zhang, X., Liu, X., Cichon, A., Królczyk, G., Li, Z.: Scheduling of energy-efficient distributed blocking flowshop using pareto-based estimation of distribution algorithm. Expert Syst. Appl. 200, 116910 (2022)

    Google Scholar 

  58. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

A. Methodology, Software, Simulation, Validation, Writing - original draft. B. Simulation, Software, review & editing. C. Simulation, Software, review & editing. D. Conceptualization, Validation, Methodology, Writing - review & editing

Corresponding author

Correspondence to Farshad Khunjush.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogani, J., Yazdanpanah, A., Zare, A. et al. A two-tier multi-objective service placement in container-based fog-cloud computing platforms. Cluster Comput 27, 4491–4514 (2024). https://doi.org/10.1007/s10586-023-04183-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04183-8

Keywords

Navigation