[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Novel lightweight and fine-grained fast access control using RNS properties in fog computing

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Fog computing provides a suitable development for real-time processing in the Internet of Things (IoT). Attribute-based encryption (ABE) is the main method to control data access in fog computing. A residue number system (RNS) can speed up multiplication and exponential operations by converting very large integers to small integers. This paper proposes a fine-grained lightweight access control scheme using ABE modified with RNS properties (RNS-ABE) with fog computing. Decryption is implemented with the Chinese remainder theorem (CRT), and a new access structure based on the CRT secret sharing scheme is also introduced. Security of the proposed scheme proved based on RNS properties and the complicated problem of factoring a very large integer into its large prime factors, like RSA encryption. The time cost comparison shows that the total encryption and decryption time of our scheme is more efficient than the lightweight schemes with the underlying operation of bilinear pairing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available from the corresponding author upon reasonable request.

References

  1. Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., Sikdar, B.: A survey on IoT security: application areas, security threats, and solution architectures. IEEE Access 7, 82721–82743 (2019). https://doi.org/10.1109/ACCESS.2019.2924045

    Article  Google Scholar 

  2. Ahmed, H.I., Nasr, A.A., Abdel-Mageid, S., Aslan, H.K.: A survey of IoT security threats and defenses. Int. J. Adv. Comput. Res. 9(45), 325–350 (2019). https://doi.org/10.19101/IJACR.2019.940088

    Article  Google Scholar 

  3. Messaoud, S., Bradai, A., Bukhari, S.H.R., Quang, P.T.A., Ahmed, O.B., Atri, M.: A survey on machine learning in internet of things: algorithms, strategies, and applications. Internet Things 12, 100314 (2020). https://doi.org/10.1016/j.iot.2020.100177

    Article  Google Scholar 

  4. Aazam, M., Zeadally, S., Harras, K.A.: Fog computing architecture, evaluation, and future research directions. IEEE Commun. Mag. 56(5), 46–52 (2018). https://doi.org/10.1109/MCOM.2018.1700707

    Article  Google Scholar 

  5. Aleisa, M.A., Abuhussein, A., Sheldon, F.T.: Access control in fog computing: challenges and research agenda. IEEE Access 8, 83986–83999 (2020). https://doi.org/10.1109/ACCESS.2020.2992460

    Article  Google Scholar 

  6. Zhang, P., Liu, J.K., Yu, F.R., Sookhak, M., Au, M.H., Luo, X.: A survey on access control in fog computing. IEEE Commun. Mag. 56(2), 144–149 (2018). https://doi.org/10.1109/MCOM.2018.1700333

    Article  Google Scholar 

  7. Ali, M., Sadeghi, M.R., Liu, X.: Lightweight revocable hierarchical attribute-based encryption for internet of things. IEEE Access 8, 23951–23964 (2020). https://doi.org/10.1109/ACCESS.2020.2969957

    Article  Google Scholar 

  8. Mohan, P.V.A.: Residue Number Systems: Theory and Applications, pp. 1–8. Birghauser, Basel (2016). https://doi.org/10.1007/978-3-319-41385-3

    Book  Google Scholar 

  9. Bethencourt, J., Sahai, A., & Waters, B.: 2007 IEEE Symposium on Security and Privacy (S&P 2007), 20–23 May 2007, Oakland, California, USA (2007). https://doi.org/10.1109/SP.2007.11

  10. Oualha, N., Nguyen, K. T.: Lightweight attribute-based encryption for the internet of things. In: 2016 25th International Conference on Computer Communication and Networks (ICCCN), pp. 1–6 (2016). https://doi.org/10.1109/ICCCN.2016.7568538.

  11. He, H., Zhang, J., Gu, J., Hu, Y., Xu, F.: A fine-grained and lightweight data access control scheme for WSN-integrated cloud computing. Clust. Comput. 20, 1457–1472 (2017). https://doi.org/10.1007/s10586-017-0863-y

    Article  Google Scholar 

  12. Zhang, P., Chen, Z., Liu, J.K., Liang, K., Liu, H.: An efficient access control scheme with outsourcing capability and attribute update for fog computing. Futur. Gener. Comput. Syst. 78, 753–762 (2018). https://doi.org/10.1016/j.future.2016.12.015

    Article  Google Scholar 

  13. Huang, Q., Yang, Y., Shen, M.: Secure and efficient data collaboration with hierarchical attribute-based encryption in cloud computing. Futur. Gener. Comput. Syst. 72, 239–249 (2017). https://doi.org/10.1016/j.future.2016.09.021

    Article  Google Scholar 

  14. Huang, Q., Yang, Y., Wang, L.: Secure data access control with ciphertext update and computation outsourcing in fog computing for Internet of Things. IEEE Access 5, 12941–12950 (2017). https://doi.org/10.1109/ACCESS.2017.2727054

    Article  Google Scholar 

  15. Amor, A.B., Abid, M., Meddeb, A.: Secure fog-based e-learning scheme. IEEE Access 8, 31920–31933 (2020). https://doi.org/10.1109/ACCESS.2020.2973325

    Article  Google Scholar 

  16. Xu, S., Ning, J., Li, Y., Zhang, Y., Xu, G., Huang, X., Deng, R.H.: Match in my way: fine-grained bilateral access control for secure cloud-fog computing. IEEE Trans. Dependable Secur. Comput. 19(2), 1064–1077 (2020). https://doi.org/10.1109/TDSC.2020.3001557

    Article  Google Scholar 

  17. Li, L., Wang, Z., Li, N.: Efficient attribute-based encryption outsourcing scheme with user and attribute revocation for fog-enabled IoT. IEEE Access 8, 176738–176749 (2020). https://doi.org/10.1109/ACCESS.2020.3025140

    Article  Google Scholar 

  18. Miao, Y., Ma, J., Liu, X., Weng, J., Li, H., Li, H.: Lightweight fine-grained search over encrypted data in fog computing. IEEE Trans. Serv. Comput. 12(5), 772–785 (2018). https://doi.org/10.1109/TSC.2018.2823309

    Article  Google Scholar 

  19. Zhang, J., Cheng, Z., Cheng, X., Chen, B.: OAC-HAS: outsourced access control with hidden access structures in fog-enhanced IoT systems. Connect. Sci. 33(4), 1060–1076 (2021). https://doi.org/10.1080/09540091.2020.1841096

    Article  Google Scholar 

  20. Feng, C., Yu, K., Aloqaily, M., Alazab, M., Lv, Z., Mumtaz, S.: Attribute-based encryption with parallel outsourced decryption for edge intelligent IoV. IEEE Trans. Veh. Technol. 69(11), 13784–13795 (2020). https://doi.org/10.1109/TVT.2020.3027568

    Article  Google Scholar 

  21. Khashan, O.A.: Hybrid lightweight proxy re-encryption scheme for secure fog-to-things environment. IEEE Access 8, 66878–66887 (2020). https://doi.org/10.1109/ACCESS.2020.2984317

    Article  Google Scholar 

  22. Zhang, A., Wang, X., Ye, X., Xie, X.: Lightweight and fine-grained access control for cloud–fog-based electronic medical record sharing systems. Int. J. Commun. Syst. 34(13), e4909 (2021). https://doi.org/10.1002/dac.4909

    Article  Google Scholar 

  23. Tu, Y., Yang, G., Wang, J., Su, Q.: A secure, efficient and verifiable multimedia data sharing scheme in fog networking system. Clust. Comput. 24(1), 225–247 (2021). https://doi.org/10.1007/s10586-020-03101-6

    Article  Google Scholar 

  24. Saidi, A., Nouali, O., Amira, A.: SHARE-ABE: an efficient and secure data sharing framework based on ciphertext-policy attribute-based encryption and Fog computing. Clust. Comput. 25(1), 167–185 (2022). https://doi.org/10.1007/s10586-021-03382-5

    Article  Google Scholar 

  25. Aghili, S.F., Sedaghat, M., Singelée, D., Gupta, M.: MLS-ABAC: efficient multi-level security attribute-based access control scheme. Futur. Gener. Comput. Syst. 131, 75–90 (2022). https://doi.org/10.1016/j.future.2022.01.003

    Article  Google Scholar 

  26. Mohan, P.V.A.: Residue Number Systems: Theory and Applications, pp. 27–128. Birghauser, Basel (2016)

    Google Scholar 

  27. Liu, Z., Cao, Z., Wong, D. S.: Efficient generation of linear secret sharing scheme matrices from threshold access trees. Cryptology ePrint Archive (2010)

  28. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 568–588. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-20465-4_31

  29. Paar, C., Pelzl, J.: Sha-3 and the hash function keccak. In: Understanding Cryptography—A Textbook for Students and Practitioners (2010)

  30. Wu, L., Miao, F., Meng, K., Wang, X.: A simple construction of CRT-based ideal secret sharing scheme and its security extension based on common factor. Front. Comput. Sci. 16(1), 1–9 (2022). https://doi.org/10.1007/s11704-021-0483-9

    Article  Google Scholar 

  31. Zuo, C., Shao, J., Wei, G., Xie, M., Ji, M.: CCA-secure ABE with outsourced decryption for fog computing. Futur. Gener. Comput. Syst. 78, 730–738 (2018). https://doi.org/10.1016/j.future.2016.10.028

    Article  Google Scholar 

  32. Mittelbach, A., Fischlin, M.: The Theory of Hash Functions and Random Oracles. An Approach to Modern Cryptography. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63287-8

    Book  Google Scholar 

  33. Ning, Y., Miao, F., Huang, W., Meng, K., Xiong, Y., Wang, X.: Constructing ideal secret sharing schemes based on Chinese remainder theorem. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 310–331. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_12

  34. Mosca, M., Verschoor, S.R.: Factoring semi-primes with (quantum) SAT-solvers. Sci. Rep. 12(1), 1–12 (2022). https://doi.org/10.1038/s41598-022-11687-7

    Article  Google Scholar 

  35. Boudot, F., Gaudry, P., Guillevic, A., Heninger, N., Thomé, E., Zimmermann, P.: The state of the art in integer factoring and breaking public-key cryptography. IEEE Secur. Priv. 20(2), 80–86 (2022). https://doi.org/10.1109/MSEC.2022.3141918

    Article  Google Scholar 

  36. Buchmann, J., Loho, J., Zayer, J.: An implementation of the general number field sieve. In: Annual International Cryptology Conference, pp. 159–165. Springer, Berlin (1993). https://doi.org/10.1007/3-540-48329-2_14

  37. Nitaj, A., Ariffin, M.R.B.K., Adenan, N.N.H., Lau, T.S.C., Chen, J.: Security issues of novel RSA variant. IEEE Access 10, 53788–53796 (2022). https://doi.org/10.1109/ACCESS.2022.3175519

    Article  Google Scholar 

  38. Lynn, B.: the Pairing-Based Cryptography Library. http://crypto.stanford.edu/pbc/ (2013)

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally.

Corresponding author

Correspondence to Somayyeh Jafarali Jassbi.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, M.A., Jafarali Jassbi, S., Khademzadeh, A. et al. Novel lightweight and fine-grained fast access control using RNS properties in fog computing. Cluster Comput 27, 3799–3817 (2024). https://doi.org/10.1007/s10586-023-04169-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-023-04169-6

Keywords

Navigation