[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Cost-efficient mobility offloading and task scheduling for microservices IoVT applications in container-based fog cloud network

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

These days, the usage of the internet of Vehicle Things (IVoT) applications such as E-Business, E-Train, E-Ambulance has been growing progressively. These applications require mobility-aware delay-sensitive services to execute their tasks. With this motivation, the study has the following contribution. Initially, the study devises a novel cooperative vehicular fog cloud network (VFCN) based on container microservices which offers cost-efficient and mobility-aware services with rich resources for processing. This study devises the cost-efficient task offloading and scheduling (CEMOTS) algorithm framework, which consists of the mobility aware task offloading phase (MTOP) method, which determines the optimal offloading time to minimize the communication cost of applications. Furthermore, CEMOTS offers Cooperative Task Offloading Scheduling (CTOS), including task sequencing and scheduling. The goal is to reduce the application costs of communication cost and computational costs under a given deadline constraint. Performance evaluation shows the CTOS and MTOP outperform existing task offloading and scheduling methods in the VCFN in terms of costs and the deadline for IoT applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data Availability Statements: IoVT Applications in Container-Based Fog Cloud Network used the for the manuscript mobility real-dataset of the one organization which is available on the following link.: User Movement Simulations Project. Available. [Online]: http://everywarelab.di.unimi.it/lbs-datasim [60]. The rest of the data such as inputs and algorithm is private data and available on local machines which can not be shared publically for now.

References

  1. Stergiou, C.L., Psannis, K.E., Gupta, B.B.: Iot-based big data secure management in the fog over a 6g wireless network. In: IEEE Internet of Things Journal (2020)

  2. Gupta, B., Quamara, M.: An overview of internet of things (IoT): architectural aspects, challenges, and protocols. Concurr. Comput. 32(21), e4946 (2020)

    Article  Google Scholar 

  3. La, A., Mastoi, Q.-U.-A., Elhoseny, M., Memon, M.S., Mohammed, M.A.: Deep neural network-based application partitioning and scheduling for hospitals and medical enterprises using IoT assisted mobile fog cloud. Enterpr. Inform. Syst, pp. 1–23 (2021)

  4. AlZubi, S., Shehab, M., Al-Ayyoub, M., Jararweh, Y., Gupta, B.: Parallel implementation for 3d medical volume fuzzy segmentation. Pattern Recogn. Lett. 130, 312–318 (2020)

    Article  Google Scholar 

  5. Esposito, C., Ficco, M., Gupta, B.B.: Blockchain-based authentication and authorization for smart city applications. Inform. Process. Manage. 58(2), 102468 (2021)

    Article  Google Scholar 

  6. Wang, H., Li, Z., Li, Y., Gupta, B., Choi, C.: Visual saliency guided complex image retrieval. Pattern Recognit. Lett. 130, 64–72 (2020)

    Article  Google Scholar 

  7. Adat, V., Gupta, B.: Security in internet of things: issues, challenges, taxonomy, and architecture. Telecommun. Syst. 67(3), 423–441 (2018)

    Article  Google Scholar 

  8. Podder, A.K., Al-Bukhari, A., Islam, S., Mia, S., Mohammed, M.A., Kumar, N.M., Cengiz, K., Abdulkareem, K.H.: IoT based smart agrotech system for verification of urban farming parameters. Microprocess. Microsyst. 82, 104025 (2021)

    Article  Google Scholar 

  9. Lakhan, A., Li, X.: Transient fault aware application partitioning computational offloading algorithm in microservices based mobile cloudlet networks. Computing 102(1), 105–139 (2020)

    Article  Google Scholar 

  10. Guo, H., Liu, J., Zhang, J., Sun, W., Kato, N.: Mobile-edge computation offloading for ultradense IoT networks. IEEE Internet Things J. 5(6), 4977–4988 (2018)

    Article  Google Scholar 

  11. Dong, P., Zheng, T., Yu, S., Zhang, H., Yan, X.: Enhancing vehicular communication using 5g-enabled smart collaborative networking. IEEE Wireless Commun. 24(6), 72–79 (2017)

    Article  Google Scholar 

  12. Masini, B.M., Bazzi, A., Natalizio, E.: Radio access for future 5g vehicular networks. In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–7 (2017)

  13. Liu, J., Wan, J., Zeng, B., Wang, Q., Song, H., Qiu, M.: A scalable and quick-response software defined vehicular network assisted by mobile edge computing. IEEE Commun. Mag. 55(7), 94–100 (2017)

    Article  Google Scholar 

  14. Bhimani, J., Yang, Z., Mi, N., Yang, J., Xu, Q., Awasthi, M., Pandurangan, R., Balakrishnan, V.: Docker container scheduler for i/o intensive applications running on NUME SSDS. IEEE Trans. Multi-Scale Comput. Syst. 4(3), 313–326 (2018)

    Article  Google Scholar 

  15. Lakhan, A., Ahmad, M., Bilal, M., Jolfaei, A., Mehmood, R.M.: Mobility aware blockchain enabled offloading and scheduling in vehicular fog cloud computing. In: IEEE Transactions on Intelligent Transportation Systems (2021)

  16. Ahuja, S.P., Wheeler, N.: Architecture of fog-enabled and cloud-enhanced internet of things applications. Int. J. Cloud Appl. Comput. (IJCAC) 10(1), 1–10 (2020)

    Google Scholar 

  17. Bansal, R., Singh, V.K.: Proposed technique for efficient cloud computing model in effective digital training towards sustainable livelihoods for unemployed youths. Int. J. Cloud Appl. Comput. (IJCAC) 10(4), 13–27 (2020)

    Google Scholar 

  18. Guo, H., Zhang, J., Liu, J.: Fiwi-enhanced vehicular edge computing networks: collaborative task offloading. IEEE Veh. Technol. Mag. 14(1), 45–53 (2019)

    Article  Google Scholar 

  19. Bu, S., Yu, F.R., Cai, Y., Liu, X.P.: When the smart grid meets energy-efficient communications: green wireless cellular networks powered by the smart grid. IEEE Trans. Wireless Commun. 11(8), 3014–3024 (2012)

    Article  Google Scholar 

  20. Bulla, C.M., Birje, M.N.: A multi-agent-based data collection and aggregation model for fog-enabled cloud monitoring. Int. J. Cloud Appl. Comput. (IJCAC) 11(1), 73–92 (2021)

    Google Scholar 

  21. Hallappanavar, V.L., Birje, M.N.: A reliable trust computing mechanism in fog computing. Int. J. Cloud Appl. Comput. (IJCAC) 11(1), 1–20 (2021)

    Google Scholar 

  22. Ahammad, I., Khan, M.A.R., Salehin, Z.U., Uddin, M., Soheli, S.J.: Improvement of QOS in an IoT ecosystem by integrating fog computing and SDN. Int. J. Cloud Appl. Comput. (IJCAC) 11(2), 48–66 (2021)

    Google Scholar 

  23. Hossain, K., Rahman, M., Roy, S.: Iot data compression and optimization techniques in cloud storage: current prospects and future directions. Int. J. Cloud Appl. Comput. (IJCAC) 9(2), 43–59 (2019)

    Google Scholar 

  24. Mutlag, A.A., Abd-Ghani, M.K., Arunkumar, N.A., Mohammed, M.A., Mohd, O.: Enabling technologies for fog computing in healthcare IoT systems. Future Generat. Comput. Syste. 90, 62–78 (2019)

    Article  Google Scholar 

  25. Khalaf, B.A., Mostafa, S.A., Mustapha, A., Mohammed, M.A., Abduallah, W.M.: Comprehensive review of artificial intelligence and statistical approaches in distributed denial of service attack and defense methods. IEEE Access 51, 51691–51713 (2019)

    Article  Google Scholar 

  26. Abdulkareem, K.H., Mohammed, M.A., Gunasekaran, S.S., Al-Mhiqani, M.N., Mutlag, A.A., Mostafa, S.A., Ibrahim, N.S., Ali, N.S., Ibrahim, D.A.: A review of fog computing and machine learning: concepts, applications, challenges, and open issues. IEEE Access 7, 153123–153140 (2019)

    Article  Google Scholar 

  27. Lahoura, V., Singh, H., Aggarwal, A., Sharma, B., Mohammed, M.A., Damaševičius, R., Kadry, S., Cengiz, K.: Cloud computing-based framework for breast cancer diagnosis using extreme learning machine. Diagnostics 11(2), 241 (2021)

    Article  Google Scholar 

  28. Abdulkareem, K.H., Mohammed, M.A., Salim, A., Arif, M., Geman, O., Gupta, D., Khanna, A.: Realizing an effective Covid-19 diagnosis system based on machine learning and IoT in smart hospital environment. In: IEEE Internet of Things Journal (2021)

  29. Hussain, M., Wei, L.F., Lakhan, A., Wali, S., Ali, S., Hussain, A.: Energy and performance-efficient task scheduling in heterogeneous virtualized cloud computing. Sustain. Comput. 30, 100517 (2021)

    Google Scholar 

  30. Mutlag, A.A., Khanapi Abd-Ghani, M., Mohammed, M.A., Maashi, M.S., Mohd, O., Mostafa, S.A., Abdulkareem, K.H., Marques, G., de la Torre Díez, I.: MAFC: multi-agent fog computing model for healthcare critical tasks management. Sensors 20(7), 1853 (2020)

    Article  Google Scholar 

  31. Memon, M.S., Lakhan, A., Mohammed, M.A., Qabulio, M., Al-Turjman, F., Abdulkareem, K.H.: Machine learning-data mining integrated approach for premature ventricular contraction prediction. Neural Comput. Applicat. 25, 1–17 (2021)

    Google Scholar 

  32. Mahesar, A.R., Lakhan, A., Sajnani, D.K., Jamali, I.A.: Hybrid delay optimization and workload assignment in mobile edge cloud networks. Open Access Library J. 5(9), 1–12 (2018)

    Google Scholar 

  33. Mostafa, S.A., Gunasekaran, S.S., Mustapha, A., Mohammed, M.A ., Abduallah,. W.M.: Modelling an adjustable autonomous multi-agent internet of things system for elderly smart home. In: International Conference on Applied Human Factors and Ergonomics. Springer, pp. 301–311 (2019)

  34. Lakhan, A., Li, X.: Mobility and fault aware adaptive task offloading in heterogeneous mobile cloud environments. EAI Endorsed Trans Mobile Commun. Appl. 16(5), 1–29 (2019)

    Google Scholar 

  35. Tomlin, C.J., Lygeros, J., Sastry, S.S.: A game theoretic approach to controller design for hybrid systems. Proc. IEEE 88(7), 949–970 (2000)

    Article  Google Scholar 

  36. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In: Proceedings IEEE Infocom. IEEE, pp. 945–953 (2012)

  37. Chun, B.-G , Ihm, S. Maniatis, P., Naik M., Patti, A. :Clonecloud: elastic execution between mobile device and cloud. In: Proceedings of the sixth conference on Computer systems. ACM, pp. 301–314 (2011)

  38. Sun, X., Ansari, N.: Latency aware workload offloading in the cloudlet network. IEEE Commun. Lett. 21(7), 1481–1484 (2017)

    Article  Google Scholar 

  39. Rasmussen, R.V., Trick, M.A.: Round robin scheduling-a survey. Eur. J. Operat. Res. 188(3), 617–636 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Etminani, K., Naghibzadeh, M.: A min–min max–min selective algorihtm for grid task scheduling. In: 3rd IEEE/IFIP International Conference in Central Asia on Internet. IEEE, pp. 1–7 (2007)

  41. Lin , C., Lu, S.: Heft scheduling scientific workflows elastically for cloud computing. In: 2011 IEEE 4th International Conference on Cloud Computing. IEEE, pp. 746–747 (2011)

  42. heng, Z., Tang, Y., Wu, H.: Joint task offloading and flexible functional split in 5g radio access network. In: 2019 International Conference on Information Networking (ICOIN)

  43. Refaat, T.K., Kantarci, B., Mouftah, H.T.: Virtual machine migration and management for vehicular clouds. Veh. Commun. 4, 47–56 (2016)

    Google Scholar 

  44. Chen, M., Hao, Y., Qiu, M., Song, J., Wu, D., Humar, I.: Mobility-aware caching and computation offloading in 5g ultra-dense cellular networks. Sensors 16(7), 974 (2016)

    Article  Google Scholar 

  45. Boukerche, A., Robson, E.: Vehicular cloud computing: architectures, applications, and mobility. Comput. Netw. 135, 171–189 (2018)

    Article  Google Scholar 

  46. Mustafa, A.M., Abubakr,O.M., Ahmadien, O., Ahmedin, A., Mokhtar, B.: Mobility prediction for efficient resources management in vehicular cloud computing. In 2017 5th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud). IEEE, pp. 53–59 (2017)

  47. Ning, Z., Xia, F., Ullah, N., Kong, X., Hu, X.: Vehicular social networks: enabling smart mobility. IEEE Commun. Mag. 55(5), 16–55 (2017)

    Article  Google Scholar 

  48. Yang, C., Liu, Y., Chen, X., Zhong, W., Xie, S.: Efficient mobility-aware task offloading for vehicular edge computing networks. IEEE Access 7, 26652–26664 (2019)

    Article  Google Scholar 

  49. Qiao, G., Leng, S., Zhang, K., He, Y.: Collaborative task offloading in vehicular edge multi-access networks. IEEE Commun. Mag. 56(8), 48–54 (2018)

    Article  Google Scholar 

  50. Jiang, Z., Zhou, S., Guo, X., Niu, Z.: Task replication for deadline-constrained vehicular cloud computing: Optimal policy, performance analysis, and implications on road traffic. IEEE Internet Things J. 5(1), 93–107 (2017)

    Article  Google Scholar 

  51. Adhikary, T., Das, A.K., Razzaque, M.A., Almogren, A., Alrubaian, M., Hassan, M.M.: Quality of service aware reliable task scheduling in vehicular cloud computing. Mobile Netw. Appl. 21(3), 482–493 (2016)

    Article  Google Scholar 

  52. Shojafar, M., Cordeschi, N., Baccarelli, E.: Energy-efficient adaptive resource management for real-time vehicular cloud services. IEEE Trans. Cloud Comput. 7(1), 196–209 (2016)

    Article  Google Scholar 

  53. Nabi, M., Benkoczi, R., Abdelhamid, S., Hassanein, H.S.: Resource assignment in vehicular clouds. In: 2017 IEEE International Conference on Communications (ICC). IEEE, pp. 1–6 (2017)

  54. Zhou, Z., Liu, P., Feng, J., Zhang, Y., Mumtaz, S., Rodriguez, J.: Computation resource allocation and task assignment optimization in vehicular fog computing: a contract-matching approach. IEEE Trans. Veh. Technol. 68(4), 3113–3125 (2019)

    Article  Google Scholar 

  55. Rui, L., Zhang, P., Huang, H., Qiu, X.: A location-dependent task assignment mechanism in vehicular crowdsensing. Int. J. Distribut. Sensor Netw. 12(9), 1550147716669627 (2016)

    Google Scholar 

  56. Zhu, C., Pastor, G., Xiao, Y., Li, Y., Ylae-Jaeaeski, A.: Fog following me: Latency and quality balanced task allocation in vehicular fog computing. In: 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). IEEE, pp. 1–9 (2018)

  57. Zhang, K., Mao, Y., Leng,  S., Maharjan, S., Zhang, Y.: Optimal delay constrained offloading for vehicular edge computing networks. In: 2017 IEEE International Conference on Communications (ICC). IEEE, pp. 1–6 (2017)

  58. Baldini, I., Castro, P., Chang, K., Cheng, P., Sink, V., Sakian, P., N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter, “Serverless computing: Current trends and open problems,” arXiv preprint arXiv:1706.03178, 2017. [Online]. Available: https://academic.microsoft.com/paper/2950821735

  59. Król, M., Psaras, I.: Nfaas: named function as a service. In: Proceedings of the 4th ACM Conference on Information-Centric Networking, pp. 134–144. (2017) [Online]. Available: https://academic.microsoft.com/paper/2755939422

  60. Ma, D., Huang, J.: The pricing model of cloud computing services. In: Proceedings of the 14th Annual International Conference on Electronic Commerce. ACM, pp. 263–269 (2012)

  61. García, L.L., Arellano, A.G., Cruz-Santos, W.: A parallel path-following phase unwrapping algorithm based on a top-down breadth-first search approach. Optic. Lasers Eng. 124, 105–827 (2020)

    Article  Google Scholar 

  62. Quwaider, M., Shatnawi, Y.: Neural network model as internet of things congestion control using pid controller and immune-hill-climbing algorithm. Simulat. Modell. Pract. Theory 101, 102022 (2020)

    Article  Google Scholar 

  63. Araya, I., Moyano, M., Sanchez, C.: A beam search algorithm for the biobjective container loading problem. Eur. J. Operat. Res. 286, 417–431 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This study was not funded.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the final dissemination of the research investigation as a full article. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mazin Abed Mohammed.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakhan, A., Memon, M.S., Mastoi, Qua. et al. Cost-efficient mobility offloading and task scheduling for microservices IoVT applications in container-based fog cloud network. Cluster Comput 25, 2061–2083 (2022). https://doi.org/10.1007/s10586-021-03333-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03333-0

Keywords

Navigation