[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Strategy-proof mechanism for time-varying batch virtual machine allocation in clouds

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Time-varying resource allocation allows users to define their own unique resource requirement plans during different time periods. This mode of allocation can increase the flexibility of resource usage and reduce resource usage costs for users. Moreover, combining this approach with an auction mechanism can enable resource providers to obtain greater social welfare and benefits; therefore, such resource allocation has become a hot topic in cloud computing. This paper addresses the problem of time-varying batch virtual machine (VM) allocation and pricing in the cloud. Specifically, (1) we propose a novel integer programming model for the time-varying batch VM allocation problem, and (2) we design two truthful auction mechanisms to solve the allocation and pricing problem in a competitive environment. The optimal mechanism includes a dynamic programming (DP)-based resource allocation algorithm and a Vickrey–Clarke–Groves (VCG)-based payment price algorithm. Meanwhile, we also design a greedy mechanism that includes a dominant-resource-based allocation algorithm and a dichotomy-based payment price algorithm. We prove the economic characteristics, including truthfulness and individual rationality, of the above two mechanisms. Furthermore, we prove the approximation ratio of the allocation algorithm in the greedy mechanism. Compared to state-of-the-art research, our approach is characterized by high social welfare, a high served user ratio and a short execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alhumaima, R.S., Ahmed, R.K., Al-Raweshidy, H.S.: Maximizing the energy efficiency of virtualized c-ran via optimizing the number of virtual machines. IEEE Trans. Green Commun. Netw. 2(4), 992–1001 (2018). https://doi.org/10.1109/TGCN.2018.2859407

    Article  Google Scholar 

  2. Alibaba (2020) Alibaba cloud. [Online]. https://www.aliyun.com/product/batchcompute

  3. Alibaba (2020) Alibaba cloud. [Online]. https://tianchi.aliyun.com/home/

  4. Angelelli, E., Filippi, C.: On the complexity of interval scheduling with a resource constraint. Theor. Comput. Sci. 412(29), 3650–3657 (2011)

    Article  MathSciNet  Google Scholar 

  5. Angelelli, E., Bianchessi, N., Filippi, C.: Optimal interval scheduling with a resource constraint. Comput. Oper. Res. 51, 268–281 (2014)

    Article  MathSciNet  Google Scholar 

  6. Guo, L., Shen, H.: Efficient approximation algorithms for the bounded flexible scheduling problem in clouds. IEEE Trans. Parallel Distrib. Syst. 28(12), 3511–3520 (2017). https://doi.org/10.1109/TPDS.2017.2731843

    Article  Google Scholar 

  7. He, J., Zhang, D., Zhou, Y., Zhang, Y.: A truthful online mechanism for collaborative computation offloading in mobile edge computing. IEEE Trans. Industr. Inf. 16(7), 4832–4841 (2020). https://doi.org/10.1109/TII.2019.2960127

    Article  Google Scholar 

  8. Hieu, N.T., Francesco, M.D., Yla-Jaaski, A.: Virtual machine consolidation with multiple usage prediction for energy-efficient cloud data centers. IEEE Trans. Serv. Comput. 13(1), 186–199 (2020). https://doi.org/10.1109/TSC.2017.2648791

    Article  Google Scholar 

  9. Jiao, Y., Wang, P., Niyato, D., Suankaewmanee, K.: Auction mechanisms in cloud/fog computing resource allocation for public blockchain networks. IEEE Trans. Parallel Distrib. Syst. 30(9), 1975–1989 (2019). https://doi.org/10.1109/TPDS.2019.2900238

    Article  Google Scholar 

  10. Li, K.: Optimal temporal partitioning of a multicore server processor for virtual machine allocation. IEEE Access 6, 54726–54738 (2018). https://doi.org/10.1109/ACCESS.2018.2872638

    Article  Google Scholar 

  11. Li, Q., Zhao, L., Gao, J., Liang, H., Zhao, L., Tang, X.: Smdp-based coordinated virtual machine allocations in cloud-fog computing systems. IEEE Internet Things J. 5(3), 1977–1988 (2018). https://doi.org/10.1109/JIOT.2018.2818680

    Article  Google Scholar 

  12. Liu, X., Li, W., Zhang, X.: Strategy-proof mechanism for provisioning and allocation virtual machines in heterogeneous clouds. IEEE Trans. Parallel Distrib. Syst. 29(7), 1650–1663 (2018)

    Article  Google Scholar 

  13. Mashayekhy, L., Nejad, M., Grosu, D.: A ptas mechanism for provisioning and allocation of heterogeneous cloud resources. IEEE Trans. Parallel Distrib. Syst. 26(9), 2386–2399 (2015)

    Article  Google Scholar 

  14. Mashayekhy, L., Fisher, N., Grosu, D.: Truthful mechanisms for competitive reward-based scheduling. IEEE Trans. Comput. 65(7), 2299–2312 (2016)

    Article  MathSciNet  Google Scholar 

  15. Mashayekhy, L., Nejad, M., Grosu, D., Vasilakos, A.: An online mechanism for resource allocation and pricing in clouds. IEEE Trans. Comput. 65(4), 1172–1184 (2016)

    Article  MathSciNet  Google Scholar 

  16. Nejad, M., Mashayekhy, L., Grosu, D.: Truthful greedy mechanisms for dynamic virtual machine provisioning and allocation in clouds. IEEE Trans. Parallel Distrib. Syst. 26(2), 594–603 (2015)

    Article  Google Scholar 

  17. Nisan, T., Roughgarden, E., Tardos, E., Vazirani, V.: Algorithmic Game Theory. Cambridge Univ. Press, Cambridge (2007)

    Book  Google Scholar 

  18. Pahlevan, A., Qu, X., Zapater, M., Atienza, D.: Integrating heuristic and machine-learning methods for efficient virtual machine allocation in data centers. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(8), 1667–1680 (2018)

    Article  Google Scholar 

  19. Shi, W., Zhang, L., Wu, C., Li, Z., Francis, C.: An online auction framework for dynamic resource provisioning in cloud computing. IEEE/ACM Trans. Netw. 42(1), 71–83 (2014)

    Google Scholar 

  20. Skutella, M., Verschae, J.: Robust polynomial-time approximation schemes for parallel machine scheduling with job arrivals and departures. Math. Oper. Res. 41(3), 991–1021 (2016)

    Article  MathSciNet  Google Scholar 

  21. Song, W., Xiao, Z., Chen, Q., Luo, H.: Adaptive resource provisioning for the cloud using online bin packing. IEEE Trans. Comput. 63(11), 2647–2660 (2014). https://doi.org/10.1109/TC.2013.148

    Article  MathSciNet  MATH  Google Scholar 

  22. Tang, X., Li, Y., Ren, R., Cai, W.: On first fit bin packing for online cloud server allocation. In: IEEE International Parallel and Distributed Processing Symposium, pp. 323–332 (2016)

  23. Wang, W., Liang, B., Li, B.: Multi-resource fair allocation in heterogeneous cloud computing systems. IEEE Trans. Parallel Distrib. Syst. 28(10), 2822–2836 (2014)

    Article  Google Scholar 

  24. Wu, Q., Hao, J.: A clique-based exact method for optimal winner determination in combinatorial auctions. Inf. Sci. 334, 103–121 (2016)

    Article  Google Scholar 

  25. Yadav, R., Zhang, W., Li, K., Liu, C., Laghari, A.A.: Managing overloaded hosts for energy-efficiency in cloud data centers. Clust. Comput. (2021). https://doi.org/10.1007/s10586-020-03182-3

    Article  Google Scholar 

  26. Yadav, R., Zhang, W., Li, K., Liu, C., Karn, N.K.: An adaptive heuristic for managing energy consumption and overloaded hosts in a cloud data center. Wireless Netw. 26, 1905–1919 (2020). https://doi.org/10.1007/s11276-018-1874-1

    Article  Google Scholar 

  27. Yadav, R., Zhang, W., Kaiwartya, O., Singh, P.R., Elgendy, I.A., Tian, Y.: Adaptive energy-aware algorithms for minimizing energy consumption and SLA violation in cloud computing. IEEE Access 6, 55923–55936 (2020). https://doi.org/10.1109/ACCESS.2018.2872750

    Article  Google Scholar 

  28. Yadav, R., Zhang, W.: MeReg: managing energy-SLA tradeoff for green mobile cloud computing. Wirel. Commun. Mob. Comput. 2017, 1–11 (2017)

    Article  Google Scholar 

  29. Yadav, R., Zhang, W., Chen, H., Guo, T. MuMs: Energy-Aware VM selection scheme for cloud data center. In: 2017 28th International Workshop on Database and Expert Systems Applications (DEXA) 2017, pp. 132–136 (2017) https://doi.org/10.1109/DEXA.2017.43

  30. Yao, W., Shen, Y., Wang, D.: A weighted pagerankbased algorithm for virtual machine placement in cloud computing. IEEE Access 7, 176369–176381 (2019). https://doi.org/10.1109/ACCESS.2019.2957772

    Article  Google Scholar 

  31. Zaman, S., Grosu, D.: A combinatorial auctionbased mechanism for dynamic vm provisioning and allocation in clouds. IEEE Trans. Cloud Comput. 1(2), 129–141 (2013). https://doi.org/10.1109/TCC.2013.9

    Article  Google Scholar 

  32. Zhang, J., Xie, N., Li, W., Yue, K., Zhang, X.: Truthful multi requirements auction mechanism for virtual resource allocation of cloud computing. J. Electron. Inf. Technol. 40(1), 25–34 (2018)

    Google Scholar 

  33. Zhang, J., Xie, N., Zhang, X., Li, W.: An online auction mechanism for cloud computing resource allocation and pricing based on user evaluation and cost. Futur. Gener. Comput. Syst. 89, 286–299 (2018)

    Article  Google Scholar 

  34. Zhang, J., Xie, N., Zhang, X., Athanasios, V., Li, W.: An online auction mechanism for time-varying multidimensional resource allocation in clouds. Futur. Gener. Comput. Syst. 111, 27–38 (2020)

    Article  Google Scholar 

  35. Zhang, X., Huang, Z., Wu, C., Li, Z., Francis, C.: Online auctions in iaas clouds: welfare and profit maximization with server costs. In: IEEE/ACM Transactions on Networking, pp 1034–1047 (2015)

  36. Zhang, X., Wu, C., Li, Z., Lau, F.C.M.: A truthful (1−ε)-optimal mechanism for on-demand cloud resource provisioning. IEEE Trans. Cloud Comput. 8(3), 735–748 (2020). https://doi.org/10.1109/TCC.2018.2822718

    Article  Google Scholar 

  37. Zhou, H., Bai, G., Deng, S.: Optimal interval scheduling with nonidentical given machines. Clust. Comput. 22(1007), 1015 (2019)

    Google Scholar 

  38. Zhou, R., Li, Z., Wu, C., Huang, Z.: An efficient cloud market mechanism for computing jobs with soft deadlines. IEEE/ACM Trans. Netw. 25(2), 793–805 (2017). https://doi.org/10.1109/TNET.2016.2609844

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (Nos. 62062065, 61762091, 61662088, 12071417 and 11663007), the Project of the Natural Science Foundation of Yunnan Province of China (2019FB142 and 2018ZF017), and the Program for Excellent Young Talents, Yunnan University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xie, N., Yang, X. et al. Strategy-proof mechanism for time-varying batch virtual machine allocation in clouds. Cluster Comput 24, 3709–3724 (2021). https://doi.org/10.1007/s10586-021-03360-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03360-x

Keywords

Navigation