Abstract
In order to effectively overcome the disadvantages of the traditional artificial bee colony (ABC) algorithm, i.e., its tendency to fall into local optima and low search speed, an improved ABC algorithm based on the self-adaptive random optimization strategy (SRABC) is proposed. First, the improved algorithm was derived from the self-adaptive method to update the new location of an ABC to improve the correlation within the bee colony. It converges swiftly and obtains the optimal solution for the benchmark function. Second, the bidirectional random optimization mechanism was used to restrain the search direction for the fitness function in order to improve the local search ability. Moreover, the particle swarm optimization algorithm regarded as the initial value of the SRABC algorithm was introduced at the initial stage of the improved ABC algorithm to increase the convergence rate, search precision and searchability, and greatly reduce the search space. Finally, simulation results for benchmark functions show that the proposed algorithm has obviously better performance regarding the search ability and convergence rate, which also prevents early maturing of algorithm.
Similar content being viewed by others
References
Dorgo, M., Maniezzo, V., Colorni, A.: The ants system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)
Kennedy, J., Ebethart, R.: Particle swarm optimization. In: Proceeding of IEEE International Conference on Neural Networks. IEEE Computer Society, Piscataway, pp. 1942–1948 (1995)
Karaboga, D.: An idea based on honey bee swarm for numerical optimization, Technical Report-TR06. Computer Engineering Department, Engineering Faculty, Erciyes University (2005)
Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial Bee Colony(ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)
Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)
Abraham, A., Jatoth, R.K., Rajasekhar, A.: Hybrid differential artificial bee colony algorithm. J. Comput. Theor. Nanosci. 9(2), 1–9 (2013)
Roeva, O.: Application of Artificial Bee Colony Algorithm for Model Parameter Identification. Springer, Cham (2018)
Xu, C.F., Dun, H.B., Liu, F.: Chaotic artificial bee colony approach to uninhabited combat air vehicle (UCAV) path planning. Aerosp. Sci. Technol. 14(8), 535–541 (2010)
Zhang, H., Peng, M., Wu, H., et al.: A strategy for intentional islanding of distribution networks based on node electrical relevance and artificial bee colony algorithm. IEEJ Trans. Electr. Electron. Eng. 13(2), 84–91 (2018)
Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of IEEE World Congress on Evolutionary Computation, Anchorage, Alaska, USA, pp. 69–73, May 1998
Bharti, K.K., Singh, P.K.: Chaotic gradient artificial bee colony for text clustering. Soft. Comput. 20(3), 1113–1126 (2016)
Kishor, A., Chandra, M., Singh, P.K.: An astute artificial bee colony algorithm. J. Adv. Intell. Syst. Comput. 546, 153–162 (2017)
Zhang, M., Ji, Z., Wang, Y.: Artificial bee colony algorithm with dynamic multi-population. Mod. Phys. Lett. B 31, 1740087 (2017)
Ding, M., Chen, H., Lin, N., et al.: Dynamic population artificial bee colony algorithm for multi-objective optimal power flow. Saudi J. Biol. Sci. 24(3), 703 (2017)
Huo, F., Liu, Y., Wang, D., et al.: Bloch quantum artificial bee colony algorithm and its application in image threshold segmentation. Signal Image Video Process. 11(12), 1–8 (2017)
Kefayat, M., Ara, A.L., Niaki, S.A.N.: A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources. Energy Convers. Manag. 92(3), 149–161 (2015)
Ozturk, C., Hancer, E., Karaboga, D.: Dynamic clustering with improved binary artificial bee colony algorithm. Appl. Soft Comput. 28, 69–80 (2015)
Gao, K.Z., Suganthan, P.N., Pan, Q.K., et al.: An improved artificial bee colony algorithm for flexible job-shop scheduling problem with fuzzy processing time. Expert Syst. Appl. 65(C), 52–67 (2016)
Li, J.Q., Pan, Q.K., Duan, P.Y.: An improved artificial bee colony algorithm for solving hybrid flexible flow shop with dynamic operation skipping. IEEE Trans. Cybern. 46(6), 1311–1324 (2016)
Zhang, P., Li, J., Hu, X., et al.: Crossover-based artificial bee colony algorithm for constrained optimization problems. Neural Comput. Appl. 26(7), 1587–1601 (2017)
Xiang, W.L., Meng, X.L., Li, Y.Z., et al.: An improved artificial bee colony algorithm based on the gravity model. Inf. Sci. 429, 49–71 (2018)
Kim, Y.H., Han, S.Y.: Topological shape optimization scheme based on the artificial bee colony algorithm. Int. J. Precis. Eng. Manuf. 18(10), 1393–1401 (2017)
Wen Ming, M.A., Meng, X.W., Zhang, Y.J.: Bidirectional random walk search mechanism for unstructured P2P network. J. Softw. 23(4), 894–911 (2013)
Jia, Z., Si, X., Wang, T.: Optimum method for sea clutter parameter based on artificial bee colony. J. Cent. South Univ. (Sci. Technol.) 43(9), 3485–3489 (2012)
Sethi, D., Singhal, A.: Comparative analysis of a recommender system based on ant colony optimization and artificial bee colony optimization algorithms. In: International Conference on Computing, Communication and Networking Technologies, pp. 1–4. IEEE Computer Society (2017)
Zhao, Z., Huang, W.: Improved artificial bee swarm algorithm and its application in optimal operation of wind-power generators. J. Cent. South Univ. (Sci. Technol.) 42(10), 3101–3104 (2011)
Acknowledgements
Part of the results in this paper appeared in the Proceedings of the 9th International Symposium on Computational Intelligence and Design (ISCID), 2016. This work is supported by the Scientific Research Program of the Higher Education Institution of Xinjiang under Grant No. XJEDU2016I049, the Natural Science Foundation of Xinjiang Uygur Autonomous Region under Grant No. 2017D01B09, Youth Research start-up fund project of School of Science and Technology Xinjiang Agricultural University under Grant No. 2016KJKY006 and No. 2016KJKY007.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liu, W., Zhang, T., Liu, Y. et al. Improved artificial bee colony algorithm based on self-adaptive random optimization strategy. Cluster Comput 22 (Suppl 2), 3971–3980 (2019). https://doi.org/10.1007/s10586-018-2558-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-018-2558-4