Abstract
Nowadays the most important key point in the design of wireless sensor networks (WSNs) is the sensor coverage point and network connectivity. The main practical issue in designing the essential WSN is the mobility of mobile sensors which consumes more power thereby reduces the network lifetime significantly. In order to avoid these problems, we have investigated the mobile sensor deployment (MSD) problem comprises of network connectivity and target coverage is resolved using Euclidean spanning tree model (ECST) and ECST-adaptive VABC (ECST-AVABC) method respectively. Besides, we proposed an AVABC optimization algorithm by obtaining minimum movement of mobile sensors over the network. Furthermore, the extensive simulation experiments have offered the optimal promising solutions of NCON, to the MSD problem with minimum movement and providing the extended lifetime of WSN. Finally, the experimental results states that the movement distance shown by the proposed ECST-AVABC become 4.2, 10, and 20% lesser than the standard ECST-VABC method.
Similar content being viewed by others
References
Blumrosen, G., Hod, B., Anker, T., Dolev, D., Rubinsky, B.: Enhancing rssi-based tracking accuracy in wireless sensor networks. ACM Trans. Sens. Netw. 9(3), 1–29 (2013)
Huang, R., Song, W.-Z., Xu, M., Peterson, N., Shirazi, B., LaHusen, R.: Real-world sensor network for long-term volcano monitoring: design and findings. IEEE Trans. Parallel Distrib. Syst. 23(2), 321–329 (2012)
S. Zhou, Wu, M.-Y., Shu, W.: Finding optimal placements for mobile sensors: wireless sensor network topology adjustment. In: Proc. IEEE 6th Circuits Syst. Symp. Emerging Technol.: Frontiers Mobile Wireless Commun., vol. 2, pp. 529–532 (2004)
Agarwal, A., Agarwal, K.: The next generation mobile wireless cellular networks–4G and beyond. Am. J. Elect. Electron. Eng. 2(3), 92–97 (2014)
Agarwal, A., Misra, G., Agarwal, K.: The 5th generation mobile wireless networks–key concepts, network architecture and challenges. Am. J. Elect. Electron. Eng. 3(2), 22–28 (2015)
Liu, X.-Y., Wu, K.-L., Zhu, Y., Kong, L., Wu, M.-Y.: Mobility increases the surface coverage of distributed sensor networks. Comput. Netw. 57(11), 2348–2363 (2013)
Luo, J., Wang, D., Zhang, Q.: Double mobility: coverage of the sea surface with mobile sensor networks. ACM SIGMOBILE Mobile Comput. Commun. Rev. 13(1), 52–55 (2009)
Somasundara, A.A., Ramamoorthy, A., Srivastava, M.B.: Mobile element scheduling with dynamic deadlines. IEEE Trans. Mobile Comput. 6(4), 395–410 (2007)
Chin, T.L., Ramanathan, P., Saluja, K.K., Wang, K.C.: Exposure for collaborative detection using mobile sensor networks. In: Proc. IEEE 2rd Int. Conf. Mobile Adhoc Sen. Syst., pp. 743–750 (2005)
Bisnik, N., Abouzeid, A.A., Isler, V.: Stochastic event capture using mobile sensors subject to a quality metric. IEEE Trans. Robot. 23(4), 676–692 (2007)
Liu, B., Dousse, O., Nain, P., Towsley, D.: Dynamic coverage of mobile sensor networks. IEEE Trans. Parallel Distrib. Syst. 24(2), 301–311 (2013)
Wang, G., Bhuiyan, M.Z.A., Cao, J., Wu, J.: Detecting movements of a target using face tracking in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 25(4), 939–949 (2014)
He, L., Pan, J., Xu, J.: A progressive approach to reducing data collection latency in wireless sensor networks with mobile elements. IEEE Trans. Mobile Comput. 12(7), 1308–1320 (2013)
Tan, R., Xing, G., Wang, J., So, H.C.: Exploiting reactive mobility for collaborative target detection in wireless sensor networks. IEEE Trans. Mobile Comput. 9(3), 317–332 (2010)
Fu, Z., You, K.: Optimal mobile sensor scheduling for a guaranteed coverage ratio in hybrid wireless sensor networks. Int. J. Distrib. Sens. Netw. 9, 1–11 (2013)
He, S., Chen, J., Li, X., Shen, X., Sun, Y.: Cost-effective barrier coverage by mobile sensor networks. In: Proc. IEEE 31st Annu. Int. Conf. Comput. Commun., pp. 819–827 (2012)
Wang, G., Irwin, M.J., Berman, P., Fu, H., Porta, T.L.: Optimizing sensor movement planning for energy efficiency. In: Proc. Int. Symp. Low Power Electron. Des., pp. 215–220 (2005)
Mahboubi, H., Moezzi, K., Aghdam, A.G., Sayrafian-Pour, K.: Self-deployment algorithms for field coverage in a network of nonidentical mobile sensors. In: Proc. IEEE Int. Conf. Commun., pp. 1–6 (2011)
Mahboubi, H., Moezzi, K., Aghdam, A.G., Pour, K.S.: Distributed deployment algorithms for efficient coverage in a network of mobile sensors with nonidentical sensing capabilities. IEEE Trans. Veh. Technol. (2014). https://doi.org/10.1109/TVT.2014.2302232
Yang, Y., Fonoage, M.I., Cardei, M.: Improving network lifetime with mobile wireless sensor networks. Comput. Commun. 33(4), 409–419 (2010)
Luo, W., Wang, J., Guo, J., Chen, J.: Parameterized complexity of max-lifetime target coverage in wireless sensor networks. Theor. Comput. Sci. 518, 32–41 (2014)
Wang, Y.-C., Tseng, Y.-C.: Distributed deployment schemes for mobile wireless sensor networks to ensure multilevel coverage. IEEE Trans. Parallel Distrib. Syst. 19(9), 1280–1294 (2008)
Wang, J., Luo, W., Feng, Q., Guo, J.: Parameterized complexity of min-power multicast problems in wireless ad hoc networks. Theor. Comput. Sci. 508, 16–25 (2013)
Mathews, E., Mathew, C.: Deployment of mobile routers ensuring coverage and connectivity. Int. J. Comput. Netw. Commun. 4(1), 175–191 (2012)
Korbi, I.E., Zeadally, S.: Energy-aware sensor node relocation in mobile sensor networks. Ad Hoc Netw. 16(1), 247–265 (2014)
Jagtap, A., Kumar, R.: A hybrid approach using Voronoi partition and swarm intelligence. Commun. J
Lu, M., Wu, J., Cardei, M., Li, M.: Energy-efficient connected coverage of discrete targets in wireless sensor networks. In: Proc. of 3rd Int. Conf. Netw. and Mobile Comput., pp. 43–52 (2005)
Luo, R.C., Chen, O.: Mobile sensor node deployment and asynchronous power management for wireless sensor networks. IEEE Trans. Ind. Electron. 59(5), 2377–2385 (2012)
Bai, X., Kumar, S., Xuan, D., Yun, Z., Lai, T.H.: Deploying wireless sensors to achieve both coverage and connectivity. In: Proc. 7th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., pp. 131–142 (2006)
van de Vel, M.: Theory of Convex Structures, vol. 50. North Holland, Amsterdam (1993)
Karp, R.M.: Reducibility Among Combinatorial Problems. Springer, New York (1972)
Lawler, H.E.L.: The quadratic assignment problem. Manage. Sci. 9(4), 586–599 (1963)
Liao, Y.Z., Zhang, S., Cao, J., Wang, W., Wang, J.: Minimizing movement for target coverage in mobile sensor networks. In: Proc. 32nd Int. Conf. Distrib. Comput. Syst., pp. 194–200 (2012)
Kuhn, Y.H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1/2), 83–97 (1955)
Cole, Y.R.: Parallel merge sort. SIAM J. Comput. 17(4), 770–785 (1988)
Liao, H.Z., Wang, J., Zhang, S., Cao, J.: Clique partition based relay placement in wimax mesh networks. In: Proc. IEEE Global Commun. Conf., pp. 2566–2571 (2012)
de Berg, H.M., van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational Geometry. Springer, New York (2000)
Shamos, M.I.: Geometric complexity. In: Proc. 7th Annu. ACM Symp. Theory Comput., pp. 224–233 (1975)
Dorigo, M., Birattari, M.: Ant colony optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 36–39. Springer, New York (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jagtap, A.M., Gomathi, N. Minimizing movement for network connectivity in mobile sensor networks: an adaptive approach. Cluster Comput 22 (Suppl 1), 1373–1383 (2019). https://doi.org/10.1007/s10586-017-1660-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-017-1660-3