[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The numerical method for the optimal supporting position and related optimal control for the catalytic reaction system

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This paper considers the numerical approximation for the optimal supporting position and related optimal control of a catalytic reaction system with some control and state constraints, which is governed by a nonlinear partial differential equations with given initial and boundary conditions. By the Galerkin finite element method, the original problem is projected into a semi-discrete optimal control problem governed by a system of ordinary differential equations. Then the control parameterization method is applied to approximate the control and reduce the original system to an optimal parameter selection problem, in which both the position and related control are taken as decision variables to be optimized. This problem can be solved as a nonlinear optimization problem by a particle swarm optimization algorithm. The numerical simulations are given to illustrate the effectiveness of the proposed numerical approximation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Davis, M.E.: Numerical Methods and Modeling for Chemical Engineers. Wiley, New York (1984)

    Google Scholar 

  2. Christofides, P.D.: Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes. Birkhauser, Boston (2001)

    Book  MATH  Google Scholar 

  3. Cao, L., Lu, N.: Experimental study and mathematical description of cationic polymerization reaction in a tubular reactor. J. Beijing Univ. Chem. Technol. 23, 46–52 (1996)

    Google Scholar 

  4. Liu, J., Gu, X., Zhang, S.: State and parameter estimation of solid-state polymerization process for PET based on ISR-UKF. CIESC J. 61, 2651–2655 (2010)

    Google Scholar 

  5. Kim, H., Miller, D.C., Modekurti, S., Omell, B., Bhattacharyya, D., Zitney, S.E.: Mathematical modeling of a moving bed reactor for post-combustion CO\(_2\) capture. AIChE J. 62, 3899–3914 (2016)

    Article  Google Scholar 

  6. Lao, L., Ellis, M., Christofides, P.D.: Handling state constraints and economics in feedback control of transport-reaction processes. J. Process Control 32, 98–108 (2015)

    Article  Google Scholar 

  7. Aksikas, I., Mohammadi, L., Forbes, J.F., Belhamadia, Y., Dubljevic, S.: Optimal control of an advection-dominated catalytic fixed-bed reactor with catalyst deactivation. J. Process Control 23, 1508–1514 (2013)

    Article  Google Scholar 

  8. Mohammadi, L., Aksikas, I., Forbes, J.F.: Characteristics-based MPC of a fixed bed reactor with catalyst deactivation. IFAC Proc. Vol. 42, 733–737 (2009)

    Article  Google Scholar 

  9. Mohammadi, L., Aksikas, I., Dubljevic, S., Forbes, J.F.: Optimal boundary control of coupled parabolic PDE-ODE systems using infinite-dimensional representation. J. Process Control 33, 102–111 (2015)

    Article  Google Scholar 

  10. Yücel, H., Stoll, M., Benner, P.: A discontinuous Galerkin method for optimal control problems governed by a system of convection–diffusion PDEs with nonlinear reaction terms. Comput. Math. Appl. 70, 2414–2431 (2015)

    Article  MathSciNet  Google Scholar 

  11. Wang, Y., Luo, X., Li, S.: “Optimal control method of parabolic partial differential equations and its application to heat transfer model in continuous cast secondary cooling zone,” Adv. Math. Phys. (2015)

  12. Ng, J., Dubljevic, S.: Optimal boundary control of a diffusion–convection-reaction PDE model with time-dependent spatial domain: Czochralski crystal growth process. Chem. Eng. Sci. 67(1), 111–119 (2012)

    Article  Google Scholar 

  13. Antoniades, C., Christofides, P.D.: Computation of optimal actuator locations for nonlinear controllers in transport-reaction processes. Comput. Chem. Eng. 24, 577–583 (2000)

    Article  Google Scholar 

  14. Armaou A., Demetriou, M.A.: “Towards optimal actuator placement for dissipative PDE systems in the presence of uncertainty”, 2010, pp. 5662–5667

  15. Armaou, A., Demetriou, M.A.: Optimal actuator sensor placement for linear parabolic PDEs using spatial H\(_2\) norm. Chem. Eng. Sci. 22, 7351–7367 (2006)

    Article  Google Scholar 

  16. Antoniades, C., Christofides, P.D.: Integrating nonlinear output feedback control and optimal actuator/sensor placement for transport-reaction processes. Chem. Eng. Sci. 56, 4517–4535 (2001)

    Article  Google Scholar 

  17. Vaidya, U., Rajaram, R., Dasgupta, S.: Actuator and sensor placement in linear advection PDE with building system application. J. Math. Anal. Appl. 394, 213–224 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Privat, Y., Trélat, E., Zuazua, E.: “Optimal location of controllers for the one-dimensional wave equation,” Annales de l’Institut Henri Poincare (C) Non Linear. Analysis 30, 1097–1126 (2013)

    MATH  Google Scholar 

  19. Fernández, F.J., Alvarez-Vázquez, L.J., García-Chan, N., Martínez, A., Vázquez-Méndez, M.E.: Optimal location of green zones in metropolitan areas to control the urban heat island. J. Comput. Appl. Math. 289, 412–425 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  20. Huang, C., Chiang, P.: An inverse study to design the optimal shape and position for delta winglet vortex generators of pin-fin heat sinks. Int. J. Therm. Sci. 109, 374–385 (2016)

    Article  Google Scholar 

  21. Guo, B., Xu, Y., Yang, D.: Optimal actuator location of minimum norm controls for heat equation with general controlled domain. J. Differ. Equ. 261, 3588–3614 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  22. Morris, K.: Linear-quadratic optimal actuator location. IEEE Trans. Autom. Control 56, 113–124 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hébrard, P., Henrot, A.: A spillover phenomenon in the optimal location of actuators. SIAM J. Control Optim. 44, 349–366 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Guo, B., Yang, D., Zhang, L.: On optimal location of diffusion and related optimal control for null controllable heat equation. J. Math. Anal. Appl. 433, 1333–1349 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zheng, G., Guo, B., Ali, M.M.: Continuous dependence of optimal control to controlled domain of actuator for heat equation. Syst. Control Lett. 79, 30–38 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  26. Xin, Y., Zhi-Gang, R., Chao, X.: An approximation for the boundary optimal control problem of a heat equation defined in a variable domain. Chin. Phys. B 23, 040201 (2014)

    Article  Google Scholar 

  27. Li, M., Christofides, P.D.: Optimal control of diffusion-convection-reaction processes using reduced-order models. Comput. Chem. Eng. 32, 2123–2135 (2008)

    Article  Google Scholar 

  28. Lin, Q., Loxton, R., Teo, K.L.: The control parameterization method for nonlinear optimal control: a survey. J. Ind. Manag. Optim. 10, 275–309 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Chen, T., Ren, Z., Xu, C., Loxton, R.: Optimal boundary control for water hammer suppression in fluid transmission pipelines. Comput. Math. Appl. 69, 275–290 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  30. Chen, T., Xu, C., Lin, Q., Loxton, R., Teo, K.L.: Water hammer mitigation via PDE-constrained optimization. Control Eng. Pract. 45, 54–63 (2015)

    Article  Google Scholar 

  31. Xu, W., Geng, Z., Zhu, Q., Gu, X.: A piecewise linear chaotic map and sequential quadratic programming based robust hybrid particle swarm optimization. Inf. Sci. 218, 85–102 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Liu, W., Yan, N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Science Press, Beijing (2008)

    Google Scholar 

  33. Teo, K.L.: A Unified Computational Approach to Optimal Control Problems. Longman Scientific and Technical, London (1991)

    MATH  Google Scholar 

  34. Zhou, Q., Luo, J.: Artificial neural network based grid computing of E-government scheduling for emergency management. Comput. Syst. Sci. Eng. 30(5), 327–335 (2015)

    Google Scholar 

  35. Zhou, Qingyuan: Research on heterogeneous data integration model of group enterprise based on cluster computing. Clust. Comput. 19(3), 1275–1282 (2016). doi:10.1007/s10586-016-0580-y

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 61374096), and the Natural Science Foundation of Zhejiang (Grant No. LY17A010020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunxiong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhu, Q., Yu, X. et al. The numerical method for the optimal supporting position and related optimal control for the catalytic reaction system. Cluster Comput 20, 2891–2903 (2017). https://doi.org/10.1007/s10586-017-0898-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0898-0

Keywords

Navigation