[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Extended fuzzy c-means: an analyzing data clustering problems

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In recent years the use of fuzzy clustering techniques in medical diagnosis is increasing steadily, because of the effectiveness of fuzzy clustering techniques in recognizing the systems in the medical database to help medical experts in diagnosing diseases. This study focuses on clustering lung cancer dataset into three types of cancers which are leading cause of cancer death in the world. This paper invents effective fuzzy clustering techniques by incorporating hyper tangent kernel function, and entropy methods for analyzing the Lung Cancer database to assist physician in diagnosing lung cancer. Further this paper proposes an algorithm to initialize the cluster centers to speed up the process of the algorithms. The effectiveness of the proposed methods has been proved through the experimental works on synthetic dataset, Wine dataset and IRIS dataset in terms of running time, number of iterations, visual segmentation effects and clustering accuracy. And then this paper proposes the proposed method on Lung cancer database to divide it into three types of lung cancers. In addition this paper proves the superiority of the proposed methods by comparing the obtained classes with reference classes through Error Matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Abonyi, J., Szeifert, F.: Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit. Lett. 24(14), 2195–2207 (2003)

    Article  MATH  Google Scholar 

  2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Book  MATH  Google Scholar 

  3. Hassanien, A.E.: Rough set approach for attribute reduction and rule generation: a case of patients with suspected breast cancer. J. Am. Soc. Inf. Sci. Technol. 55(11), 954–962 (2004)

    Article  Google Scholar 

  4. Chen, H.-L., Yang, B., Liu, J., Liu, D.-Y.: A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert Syst. Appl. 38, 9014–9022 (2011)

    Article  Google Scholar 

  5. Kannan, S.R., Ramathilagam, S.: Fuzzy error matrix in classification techniques. Int. J. Appl. Math. Inform. 26(1–5), 861–876 (2008). ISSN: 1598-5857

    Google Scholar 

  6. Kanzawa, Y., Endo, Y., Miyamoto, S.: Fuzzy classification function of entropy regularized fuzzy c-means algorithm for data with tolerance using kernel function. In: Granular Computing (GrC 2008), pp. 350–355 (2008) IEEE Xplore

    Chapter  Google Scholar 

  7. Maglogiannis, I., Zafiropoulos, E., et al.: An intelligent system for automated breast cancer diagnosis and prognosis using SVM based classifiers. Appl. Intell. 30(1), 24–36 (2009)

    Article  Google Scholar 

  8. Parkin, D.M., Bray, F., Ferlay, J., Pisani, P.: Global cancer statistics. CA Cancer J Clin 55(2), 74–108 (2002)

    Article  Google Scholar 

  9. Pena-Reyes, C.A., Sipper, M.: A fuzzy-genetic approach to breast cancer diagnosis. Artif. Intell. Med. 17(2), 131–155 (1999)

    Article  Google Scholar 

  10. Polat, K., Gunes, S.: Breast cancer diagnosis using least square support vector machine. Digit. Signal Process. 17(4), 694–701 (2007)

    Article  Google Scholar 

  11. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  12. Sahan, S., Polat, K., et al.: A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis. Comput. Biol. Med. 37(3), 415–423 (2007)

    Article  Google Scholar 

  13. Setiono, R.: Generating concise and accurate classification rules for breast cancer diagnosis. Artif. Intell. Med. 18(3), 205–219 (2000)

    Article  Google Scholar 

  14. Hawes, S.E., Stern, J.E., Feng, Q., Wiens, L.W., Rasey, Janet S., Lu, H., Kiviat, N.B., Vesselle, H.: DNA hypermethylation of tumors from non-small cell lung cancer (NSCLC) patients is associated with gender and histologic type. Lung Cancer 69(2010), 172–179 (2010)

    Article  Google Scholar 

  15. Tamer, A.M., Karahan, H.X., Aral, M.M.: Aquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic algorithm. J. Hydrol. 343, 240–253 (2007)

    Article  Google Scholar 

  16. Ubeyli, E.D.: Implementing automated diagnostic systems for breast cancer detection. Expert Syst. Appl. 33(4), 1054–1062 (2007)

    Article  Google Scholar 

  17. UCI Benchmark repository: a huge collection of artificial and real world data sets, University of California Irvine. http://www.ics.uci.edu/~mlearn

  18. Zhang, D.Q., Chen, S.C.: Clustering incomplete data using kernel-based fuzzy C-means algorithm. Neural Process. Lett. 18(3), 155–162 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially support by UGC MRP, India (Ref. No. 39-35/2010(SR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Kannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramathilagam, S., Devi, R. & Kannan, S.R. Extended fuzzy c-means: an analyzing data clustering problems. Cluster Comput 16, 389–406 (2013). https://doi.org/10.1007/s10586-012-0202-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-012-0202-2

Keywords

Navigation